Support Vector Machine Classifier for Pattern Recognition

Mohammad Farhan, Ghulam Kassem, Mujeeb Abdullah, Siddique Akbar
{"title":"Support Vector Machine Classifier for Pattern Recognition","authors":"Mohammad Farhan, Ghulam Kassem, Mujeeb Abdullah, Siddique Akbar","doi":"10.1109/ICI.2011.52","DOIUrl":null,"url":null,"abstract":"Automatiuc speech recognition is carried out by Mel-frequency cepstral coefficient (MFCC). Linearly-spaced at low and logarithmic-spaced filters at higher frequencies are used to capture the characteristics of speech. Multi-layer perceptrons (MLP) approximate continuous and non-linear functions. High dimensional patterns are not permitted due to eigen-decomposition in high dimensional image space and degeneration of scattering matrices in small size sample. Generalization, dimensionality reduction and maximizing the margins are controlled by minimizing weight vectors. Results show good pattern by SVM algorithm with Mercer kernel.","PeriodicalId":146712,"journal":{"name":"2011 First International Conference on Informatics and Computational Intelligence","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 First International Conference on Informatics and Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICI.2011.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Automatiuc speech recognition is carried out by Mel-frequency cepstral coefficient (MFCC). Linearly-spaced at low and logarithmic-spaced filters at higher frequencies are used to capture the characteristics of speech. Multi-layer perceptrons (MLP) approximate continuous and non-linear functions. High dimensional patterns are not permitted due to eigen-decomposition in high dimensional image space and degeneration of scattering matrices in small size sample. Generalization, dimensionality reduction and maximizing the margins are controlled by minimizing weight vectors. Results show good pattern by SVM algorithm with Mercer kernel.
模式识别的支持向量机分类器
利用mel -频率倒谱系数(MFCC)实现语音自动识别。低频时采用线性间隔滤波器,高频时采用对数间隔滤波器来捕捉语音特征。多层感知器(MLP)近似连续和非线性函数。由于高维图像空间的特征分解和小尺寸样品中散射矩阵的退化,不允许使用高维图像。通过最小化权向量来控制泛化、降维和边际最大化。结果表明,基于Mercer核的SVM算法具有良好的模式性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信