Object tracking using SIFT and KLT tracker for UAV-based applications

Falah Jabar, Sajad Farokhi, U. U. Sheikh
{"title":"Object tracking using SIFT and KLT tracker for UAV-based applications","authors":"Falah Jabar, Sajad Farokhi, U. U. Sheikh","doi":"10.1109/IRIS.2015.7451588","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a semi-automatic object tracking method based on a Scale Invariant Feature Transform (SIFT) and Kanade-Lucas-Tomasi (KLT) tracker. In our approach, the region of interest is specified by the user and then the interest points are detected. The tracker is then used to track the specified object in the consecutive frames. To overcome rapid changes of appearance, occlusion or disappearance from the camera view, we employ a forward-backward error compensation. Experimental results on VIVID dataset indicates that the proposed method has superior overall performance compared to more common methods in the field.","PeriodicalId":175861,"journal":{"name":"2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRIS.2015.7451588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, we propose a semi-automatic object tracking method based on a Scale Invariant Feature Transform (SIFT) and Kanade-Lucas-Tomasi (KLT) tracker. In our approach, the region of interest is specified by the user and then the interest points are detected. The tracker is then used to track the specified object in the consecutive frames. To overcome rapid changes of appearance, occlusion or disappearance from the camera view, we employ a forward-backward error compensation. Experimental results on VIVID dataset indicates that the proposed method has superior overall performance compared to more common methods in the field.
目标跟踪使用SIFT和KLT跟踪无人机为基础的应用
本文提出了一种基于尺度不变特征变换(SIFT)和Kanade-Lucas-Tomasi (KLT)跟踪器的半自动目标跟踪方法。在我们的方法中,用户指定感兴趣的区域,然后检测感兴趣点。然后使用跟踪器跟踪连续帧中的指定对象。为了克服快速变化的外观,遮挡或消失从相机视图,我们采用了向前向后误差补偿。在VIVID数据集上的实验结果表明,该方法具有较好的综合性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信