ResLoc: Deep residual sharing learning for indoor localization with CSI tensors

Xuyu Wang, Xiangyu Wang, S. Mao
{"title":"ResLoc: Deep residual sharing learning for indoor localization with CSI tensors","authors":"Xuyu Wang, Xiangyu Wang, S. Mao","doi":"10.1109/PIMRC.2017.8292236","DOIUrl":null,"url":null,"abstract":"Wi-Fi based indoor localization has attracted great interest due to its ubiquitous access in many indoor environments. In this paper, we propose ResLoc, a deep residual sharing learning based system for indoor localization with channel state information (CSI) tensor data. We first introduce CSI data in wireless systems and show how to build CSI tensors for indoor localization. Then, we present the design of ResLoc, which employs dual-channel, bi-modal CSI tensor data to train the deep network using the proposed deep residual sharing learning in the offline phase. In the online test phase, we use newly received CSI tensor data to estimate the location of the mobile device based on an enhanced probabilistic method. The experimental results show that the proposed ResLoc system can obtain submeter level accuracy with a single access point.","PeriodicalId":397107,"journal":{"name":"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2017.8292236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

Wi-Fi based indoor localization has attracted great interest due to its ubiquitous access in many indoor environments. In this paper, we propose ResLoc, a deep residual sharing learning based system for indoor localization with channel state information (CSI) tensor data. We first introduce CSI data in wireless systems and show how to build CSI tensors for indoor localization. Then, we present the design of ResLoc, which employs dual-channel, bi-modal CSI tensor data to train the deep network using the proposed deep residual sharing learning in the offline phase. In the online test phase, we use newly received CSI tensor data to estimate the location of the mobile device based on an enhanced probabilistic method. The experimental results show that the proposed ResLoc system can obtain submeter level accuracy with a single access point.
ResLoc:基于CSI张量的室内定位深度残差共享学习
基于Wi-Fi的室内定位由于其在许多室内环境中无处不在的接入而引起了人们的极大兴趣。本文提出了一种基于深度残差共享学习的基于信道状态信息张量数据的室内定位系统ResLoc。我们首先介绍了无线系统中的CSI数据,并展示了如何构建用于室内定位的CSI张量。然后,我们提出了ResLoc的设计,它使用双通道,双峰CSI张量数据在离线阶段使用所提出的深度残差共享学习来训练深度网络。在在线测试阶段,我们使用新接收到的CSI张量数据,基于增强的概率方法估计移动设备的位置。实验结果表明,该系统可以在单个接入点下获得亚米级的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信