Category Mining by Heterogeneous Data Fusion Using PdLSI Model in a Retail Service

Tsukasa Ishigaki, T. Takenaka, Y. Motomura
{"title":"Category Mining by Heterogeneous Data Fusion Using PdLSI Model in a Retail Service","authors":"Tsukasa Ishigaki, T. Takenaka, Y. Motomura","doi":"10.1109/ICDM.2010.83","DOIUrl":null,"url":null,"abstract":"This paper describes an appropriate category discovery method that simultaneously involves a customer's lifestyle category and item category for the sustainable management of retail services, designated as ``category mining''. Category mining is realized using a large-scale ID-POS data and customer's questionnaire responses with respect to their lifestyle. For the heterogeneous data fusion, we propose a probabilistic double-latent semantic indexing (PdLSI) model that is an extension of PLSI model. In the PdLSI model, customers and items are classified probabilistically into some latent lifestyle categories and latent item category. Then, understanding of relation between the latent categories and various purchased situations is realized using Bayesian network modeling. This method provides useful knowledge based on a large-scale data for efficient customer relationship management and category management, and can be applicable for other service industries.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper describes an appropriate category discovery method that simultaneously involves a customer's lifestyle category and item category for the sustainable management of retail services, designated as ``category mining''. Category mining is realized using a large-scale ID-POS data and customer's questionnaire responses with respect to their lifestyle. For the heterogeneous data fusion, we propose a probabilistic double-latent semantic indexing (PdLSI) model that is an extension of PLSI model. In the PdLSI model, customers and items are classified probabilistically into some latent lifestyle categories and latent item category. Then, understanding of relation between the latent categories and various purchased situations is realized using Bayesian network modeling. This method provides useful knowledge based on a large-scale data for efficient customer relationship management and category management, and can be applicable for other service industries.
基于PdLSI模型的零售服务异构数据融合分类挖掘
本文描述了一种合适的类别发现方法,同时涉及客户的生活方式类别和商品类别,以实现零售服务的可持续管理,称为“类别挖掘”。使用大规模ID-POS数据和客户关于其生活方式的问卷回答来实现类别挖掘。针对异构数据融合,提出了一种概率双潜语义索引(PdLSI)模型,该模型是PLSI模型的扩展。在PdLSI模型中,顾客和物品被概率地划分为潜在的生活方式类别和潜在的物品类别。然后,利用贝叶斯网络建模实现了对潜在类别与各种购买情况之间关系的理解。该方法为高效的客户关系管理和品类管理提供了基于大规模数据的有用知识,可应用于其他服务行业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信