A study of cross-validation and bootstrap as objective functions for genetic algorithms

E. D. Lacerda, A. Carvalho, Teresa B Ludermir
{"title":"A study of cross-validation and bootstrap as objective functions for genetic algorithms","authors":"E. D. Lacerda, A. Carvalho, Teresa B Ludermir","doi":"10.1109/SBRN.2002.1181451","DOIUrl":null,"url":null,"abstract":"This article addresses the problem of finding the adjustable parameters of a learning algorithm using genetic algorithms. This problem is also known as the model selection problem. Some model selection techniques (e.g., cross-validation and bootstrap) are combined with the genetic algorithms of different ways. Those combinations explore features of the genetic algorithms such as the ability for handling multiple and noise objective functions. The proposed multiobjective GA is quite general and can be applied to a large range of learning algorithms.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

This article addresses the problem of finding the adjustable parameters of a learning algorithm using genetic algorithms. This problem is also known as the model selection problem. Some model selection techniques (e.g., cross-validation and bootstrap) are combined with the genetic algorithms of different ways. Those combinations explore features of the genetic algorithms such as the ability for handling multiple and noise objective functions. The proposed multiobjective GA is quite general and can be applied to a large range of learning algorithms.
交叉验证和自举作为遗传算法目标函数的研究
本文讨论了使用遗传算法寻找学习算法的可调参数的问题。这个问题也被称为模型选择问题。一些模型选择技术(如交叉验证和自举)以不同的方式与遗传算法相结合。这些组合探索了遗传算法的特征,如处理多个和噪声目标函数的能力。所提出的多目标遗传算法具有较强的通用性,可应用于多种学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信