{"title":"Antagonism Activity of Phosphate Solubilizing Bacteria Against Ganoderma philippii and Fusarium oxysporum of Acacia Plants","authors":"M. Asril, Y. Lisafitri, Bayo Alhusaeri Siregar","doi":"10.47352/jmans.2774-3047.118","DOIUrl":null,"url":null,"abstract":"Ganoderma philippii and Fusarium oxysporum 0148c are the primary pathogenic fungus that causes root rot and damping-off in young Acacia plants. The best treatment to date is the use of biological control agents. Phosphate solubilizing bacteria (PSB) isolated from acid soil is a bacterial isolate classified as plant growth-promoting bacteria (PGPB). PGPB has an indirect function as a biocontrol agent for fungal pathogens. This study aimed to determine the potential of PSB isolate EF.NAP 8 in inhibiting G. philippii and F. oxysporum 0148c from acacia plants. The method used is a dual culture antagonism test and observation of abnormal hyphae after the antagonism process. The results showed that the isolate EF.NAP 8 inhibited G. philippii by 34.44% and F. oxysporum 0148c by 33.33%. The abnormality of hyphae after antagonistic activity results in hyphal malformations such as hyphae lysis and hyphae coiling. The antagonistic activity of PSB EF.NAP 8 isolate is one of part of the ability of a bacterium classified as PGPB in the form of biocontrol activity against pathogenic fungi. This provides information regarding the opportunity to utilize EF.NAP 8 as a candidate agent for controlling fungal pathogens on acacia plants.","PeriodicalId":264018,"journal":{"name":"Journal of Multidisciplinary Applied Natural Science","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multidisciplinary Applied Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47352/jmans.2774-3047.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Ganoderma philippii and Fusarium oxysporum 0148c are the primary pathogenic fungus that causes root rot and damping-off in young Acacia plants. The best treatment to date is the use of biological control agents. Phosphate solubilizing bacteria (PSB) isolated from acid soil is a bacterial isolate classified as plant growth-promoting bacteria (PGPB). PGPB has an indirect function as a biocontrol agent for fungal pathogens. This study aimed to determine the potential of PSB isolate EF.NAP 8 in inhibiting G. philippii and F. oxysporum 0148c from acacia plants. The method used is a dual culture antagonism test and observation of abnormal hyphae after the antagonism process. The results showed that the isolate EF.NAP 8 inhibited G. philippii by 34.44% and F. oxysporum 0148c by 33.33%. The abnormality of hyphae after antagonistic activity results in hyphal malformations such as hyphae lysis and hyphae coiling. The antagonistic activity of PSB EF.NAP 8 isolate is one of part of the ability of a bacterium classified as PGPB in the form of biocontrol activity against pathogenic fungi. This provides information regarding the opportunity to utilize EF.NAP 8 as a candidate agent for controlling fungal pathogens on acacia plants.