Lower bound for degree of sequential diagnosability of Cayley graphs

Toshinori Yamada
{"title":"Lower bound for degree of sequential diagnosability of Cayley graphs","authors":"Toshinori Yamada","doi":"10.1109/SM2ACD.2010.5672318","DOIUrl":null,"url":null,"abstract":"This paper presents that the degree of sequential diagnosability of an N-vertex Cayley graph is Ω(N/D) by generalizing a known technique of finding a lower bound for that of a CCC(cube-connected cycles), where D is the diameter of the Cayley graph. From the lower bound, it is shown that the degrees of sequential diagnosability of the N-vertex star graph and wrapped butterfly are Ω(N log log N/logN) and Ω(N/logN), respectively.","PeriodicalId":442381,"journal":{"name":"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SM2ACD.2010.5672318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents that the degree of sequential diagnosability of an N-vertex Cayley graph is Ω(N/D) by generalizing a known technique of finding a lower bound for that of a CCC(cube-connected cycles), where D is the diameter of the Cayley graph. From the lower bound, it is shown that the degrees of sequential diagnosability of the N-vertex star graph and wrapped butterfly are Ω(N log log N/logN) and Ω(N/logN), respectively.
Cayley图序列可诊断度的下界
本文通过推广一种已知的求CCC(立方连通循环)的下界的技术,给出了N顶点Cayley图的顺序可诊断度为Ω(N/D),其中D为Cayley图的直径。由下界可知,N顶点星图和包裹蝴蝶的顺序可诊断度分别为Ω(N log logN /logN)和Ω(N/logN)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信