Parameterized Complexity of Equality MinCSP

George Osipov, Magnus Wahlstrom
{"title":"Parameterized Complexity of Equality MinCSP","authors":"George Osipov, Magnus Wahlstrom","doi":"10.48550/arXiv.2305.11131","DOIUrl":null,"url":null,"abstract":"We study the parameterized complexity of MinCSP for so-called equality languages, i.e., for finite languages over an infinite domain such as $\\mathbb{N}$, where the relations are defined via first-order formulas whose only predicate is $=$. This is an important class of languages that forms the starting point of all study of infinite-domain CSPs under the commonly used approach pioneered by Bodirsky, i.e., languages defined as reducts of finitely bounded homogeneous structures. Moreover, MinCSP over equality languages forms a natural class of optimisation problems in its own right, covering such problems as Edge Multicut, Steiner Multicut and (under singleton expansion) Edge Multiway Cut. We classify MinCSP$(\\Gamma)$ for every finite equality language $\\Gamma$, under the natural parameter, as either FPT, W[1]-hard but admitting a constant-factor FPT-approximation, or not admitting a constant-factor FPT-approximation unless FPT=W[2]. In particular, we describe an FPT case that slightly generalises Multicut, and show a constant-factor FPT-approximation for Disjunctive Multicut, the generalisation of Multicut where the ``cut requests'' come as disjunctions over $d = O(1)$ individual cut requests $s_i \\neq t_i$. We also consider singleton expansions of equality languages, i.e., enriching an equality language with the capability for assignment constraints $(x=i)$ for either finitely or infinitely many constants $i \\in \\mathbb{N}$, and fully characterize the complexity of the resulting MinCSP.","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.11131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the parameterized complexity of MinCSP for so-called equality languages, i.e., for finite languages over an infinite domain such as $\mathbb{N}$, where the relations are defined via first-order formulas whose only predicate is $=$. This is an important class of languages that forms the starting point of all study of infinite-domain CSPs under the commonly used approach pioneered by Bodirsky, i.e., languages defined as reducts of finitely bounded homogeneous structures. Moreover, MinCSP over equality languages forms a natural class of optimisation problems in its own right, covering such problems as Edge Multicut, Steiner Multicut and (under singleton expansion) Edge Multiway Cut. We classify MinCSP$(\Gamma)$ for every finite equality language $\Gamma$, under the natural parameter, as either FPT, W[1]-hard but admitting a constant-factor FPT-approximation, or not admitting a constant-factor FPT-approximation unless FPT=W[2]. In particular, we describe an FPT case that slightly generalises Multicut, and show a constant-factor FPT-approximation for Disjunctive Multicut, the generalisation of Multicut where the ``cut requests'' come as disjunctions over $d = O(1)$ individual cut requests $s_i \neq t_i$. We also consider singleton expansions of equality languages, i.e., enriching an equality language with the capability for assignment constraints $(x=i)$ for either finitely or infinitely many constants $i \in \mathbb{N}$, and fully characterize the complexity of the resulting MinCSP.
等式的参数化复杂度MinCSP
我们研究了所谓相等语言的MinCSP的参数化复杂性,即对于无限域(如$\mathbb{N}$)上的有限语言,其中关系是通过唯一谓词为$=$的一阶公式定义的。这是一类重要的语言,它构成了Bodirsky开创的常用方法下所有无限域csp研究的起点,即定义为有限有界齐次结构的约简的语言。此外,MinCSP在相等语言上形成了一个自然的优化问题,涵盖了边缘多切、斯坦纳多切和(在单例扩展下)边缘多路切等问题。我们将MinCSP $(\Gamma)$对每个有限相等语言$\Gamma$进行分类,在自然参数下,要么FPT, W[1]-hard但承认常数因子FPT-逼近,要么不承认常数因子FPT-逼近,除非FPT=W[2]。特别地,我们描述了一个稍微概括了多元分割的FPT案例,并展示了析取多元分割的常数因子FPT近似,即多元分割的泛化,其中“切割请求”作为$d = O(1)$单个切割请求$s_i \neq t_i$的析取。我们还考虑了相等语言的单例扩展,即,丰富相等语言的赋值约束能力$(x=i)$对于有限或无限多常数$i \in \mathbb{N}$,并充分表征了最终MinCSP的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信