An integrated approach for fuzzy rule generation in dataset classification using hybrid grid partitioning and rough set theory

Tokpa Braxton Ferguson
{"title":"An integrated approach for fuzzy rule generation in dataset classification using hybrid grid partitioning and rough set theory","authors":"Tokpa Braxton Ferguson","doi":"10.35335/emod.v17i2.19","DOIUrl":null,"url":null,"abstract":"This research presents an integrated approach for fuzzy rule generation in dataset classification by combining hybrid grid partitioning and rough set theory. The objective is to enhance the accuracy and interpretability of classification models. The approach leverages hybrid grid partitioning to achieve localized rule generation, capturing the local characteristics and patterns within different regions of the feature space. Furthermore, rough set theory is applied for attribute reduction, identifying the most relevant features and reducing the complexity of the classification problem. The generated fuzzy rules provide interpretable and understandable classification rules that facilitate domain expert interpretation. The research contributes to the field by proposing a comprehensive framework that improves both accuracy and interpretability of dataset classification. The findings demonstrate the effectiveness of the integrated approach, although certain limitations exist. Future research should focus on parameter selection, scalability challenges, and the applicability of the approach to diverse problem domains. The integrated approach presents a promising methodology for enhancing the accuracy and interpretability of dataset classification, with potential applications in various domains where accurate and interpretable classification models are crucial.","PeriodicalId":262913,"journal":{"name":"International Journal of Enterprise Modelling","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Enterprise Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35335/emod.v17i2.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research presents an integrated approach for fuzzy rule generation in dataset classification by combining hybrid grid partitioning and rough set theory. The objective is to enhance the accuracy and interpretability of classification models. The approach leverages hybrid grid partitioning to achieve localized rule generation, capturing the local characteristics and patterns within different regions of the feature space. Furthermore, rough set theory is applied for attribute reduction, identifying the most relevant features and reducing the complexity of the classification problem. The generated fuzzy rules provide interpretable and understandable classification rules that facilitate domain expert interpretation. The research contributes to the field by proposing a comprehensive framework that improves both accuracy and interpretability of dataset classification. The findings demonstrate the effectiveness of the integrated approach, although certain limitations exist. Future research should focus on parameter selection, scalability challenges, and the applicability of the approach to diverse problem domains. The integrated approach presents a promising methodology for enhancing the accuracy and interpretability of dataset classification, with potential applications in various domains where accurate and interpretable classification models are crucial.
基于混合网格划分和粗糙集理论的数据集分类模糊规则生成集成方法
将混合网格划分与粗糙集理论相结合,提出了一种数据集分类中模糊规则生成的集成方法。目标是提高分类模型的准确性和可解释性。该方法利用混合网格划分实现局部规则生成,捕获特征空间不同区域内的局部特征和模式。进一步,利用粗糙集理论进行属性约简,识别出最相关的特征,降低了分类问题的复杂度。生成的模糊规则提供了可解释和可理解的分类规则,便于领域专家进行解释。该研究通过提出一个全面的框架来提高数据集分类的准确性和可解释性,从而为该领域做出了贡献。调查结果表明综合方法的有效性,尽管存在某些局限性。未来的研究应该集中在参数选择、可扩展性挑战以及该方法在不同问题领域的适用性上。该集成方法为提高数据集分类的准确性和可解释性提供了一种有前途的方法,在准确和可解释的分类模型至关重要的各个领域具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信