Case Study: A Semi-Supervised Methodology for Anomaly Detection and Diagnosis

Andrés Morales-Forero, S. Bassetto
{"title":"Case Study: A Semi-Supervised Methodology for Anomaly Detection and Diagnosis","authors":"Andrés Morales-Forero, S. Bassetto","doi":"10.1109/IEEM44572.2019.8978509","DOIUrl":null,"url":null,"abstract":"In this paper, a semi-supervised methodology for anomaly detection and diagnosis is proposed. The approach combines techniques of non-parametric statistics, quality control, and deep learning to provide a tool that allows an adequate and online detection of faults in a production system and a diagnosis of the factors associated with the failure. We propose a semi-supervised neural network for detection and a particular control chart called Open Up for the diagnosis. This neural network is composed of the adjustment of an autoencoder followed by a Long Short-Term Memory model (LSTM). Open Up is used in the last stage to identify the variables associated with the anomaly. This proposal achieves a high correct classification rate using real data of a monitoring system in paper manufacturing and simulated data from the Tennessee Eastman Process.","PeriodicalId":255418,"journal":{"name":"2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM44572.2019.8978509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, a semi-supervised methodology for anomaly detection and diagnosis is proposed. The approach combines techniques of non-parametric statistics, quality control, and deep learning to provide a tool that allows an adequate and online detection of faults in a production system and a diagnosis of the factors associated with the failure. We propose a semi-supervised neural network for detection and a particular control chart called Open Up for the diagnosis. This neural network is composed of the adjustment of an autoencoder followed by a Long Short-Term Memory model (LSTM). Open Up is used in the last stage to identify the variables associated with the anomaly. This proposal achieves a high correct classification rate using real data of a monitoring system in paper manufacturing and simulated data from the Tennessee Eastman Process.
案例研究:一种半监督的异常检测和诊断方法
本文提出了一种半监督的异常检测与诊断方法。该方法结合了非参数统计、质量控制和深度学习技术,提供了一种工具,可以对生产系统中的故障进行充分的在线检测,并对与故障相关的因素进行诊断。我们提出了一种半监督神经网络用于检测,并提出了一种称为Open Up的特殊控制图用于诊断。该神经网络由自编码器的调整和长短期记忆模型(LSTM)组成。Open Up在最后阶段用于识别与异常相关的变量。本文利用造纸监控系统的真实数据和田纳西州伊士曼工艺的模拟数据,实现了较高的分类正确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信