Towards implementing uncertainty propagation in probabilistic floating-point computation error bounding

Rivan Zhang, Arvind Rajan, Y. Kuang, M. Ooi, S. Demidenko
{"title":"Towards implementing uncertainty propagation in probabilistic floating-point computation error bounding","authors":"Rivan Zhang, Arvind Rajan, Y. Kuang, M. Ooi, S. Demidenko","doi":"10.1109/I2MTC.2018.8409672","DOIUrl":null,"url":null,"abstract":"Reconfigurable microprocessor has the flexibility of allocating the number of bits for floating point number representation. This allows the hardware to manage the trade-off between computational accuracy versus resource utilization. By fine-tuning the precision used in mathematical computation, it is possible to optimize the memory usage, processing speed, power budget, latency, and maximum frequency while using less silicon area in the design. Thus, ignoring this potential will significantly limit the achievable performance. This paper extends the application of uncertainty analysis developed for measurement to the error bound estimation for floating-point computation. The results show that by searching for probabilistic bounds instead of mathematically guaranteed bounds, the tightness of the bounds can be substantially improved compared to the mainstream interval arithmetic and affine arithmetic methods. The proposed method will be useful for the design optimization of digital signal processing or machine intelligence modules that are not sensitive against occasional overflow and underflow.","PeriodicalId":393766,"journal":{"name":"2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2018.8409672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reconfigurable microprocessor has the flexibility of allocating the number of bits for floating point number representation. This allows the hardware to manage the trade-off between computational accuracy versus resource utilization. By fine-tuning the precision used in mathematical computation, it is possible to optimize the memory usage, processing speed, power budget, latency, and maximum frequency while using less silicon area in the design. Thus, ignoring this potential will significantly limit the achievable performance. This paper extends the application of uncertainty analysis developed for measurement to the error bound estimation for floating-point computation. The results show that by searching for probabilistic bounds instead of mathematically guaranteed bounds, the tightness of the bounds can be substantially improved compared to the mainstream interval arithmetic and affine arithmetic methods. The proposed method will be useful for the design optimization of digital signal processing or machine intelligence modules that are not sensitive against occasional overflow and underflow.
论概率浮点计算误差边界中不确定性传播的实现
可重构微处理器具有分配浮点数表示位数的灵活性。这允许硬件管理计算精度与资源利用率之间的权衡。通过微调数学计算中使用的精度,可以优化内存使用、处理速度、功率预算、延迟和最大频率,同时在设计中使用更少的硅面积。因此,忽略这种潜力将极大地限制可实现的性能。本文将测量领域的不确定性分析扩展到浮点计算的误差界估计。结果表明,与主流的区间算法和仿射算法相比,通过搜索概率边界而不是数学上保证的边界,可以大大提高边界的紧密性。该方法可用于数字信号处理或机器智能模块的设计优化,这些模块对偶尔溢出和下溢不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信