Optimization of LBP parameters

Marek Lóderer, J. Pavlovičová
{"title":"Optimization of LBP parameters","authors":"Marek Lóderer, J. Pavlovičová","doi":"10.1109/ELMAR.2014.6923329","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the optimal parameters of local binary patterns such as type of pattern, size of blocks in the feature space and distance measure for face recognition using a genetic algorithm. The genetic algorithm is able to optimize all these parameters quickly and to improve the recognition accuracy. We provide a comparative study of three types of local binary patterns (LBP, LGP and NRLBP) and four distance measures (L1, L2, χ2, EMD). The genetic algorithm is also used to optimize parameters such as dimension of histograms. Our results are tested on three different face databases which have the similar properties. We can set these optimal parameters into our face recognition system suitable for the next-generation of hybrid broadcast broadband television.","PeriodicalId":424325,"journal":{"name":"Proceedings ELMAR-2014","volume":"69 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ELMAR-2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELMAR.2014.6923329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we propose the optimal parameters of local binary patterns such as type of pattern, size of blocks in the feature space and distance measure for face recognition using a genetic algorithm. The genetic algorithm is able to optimize all these parameters quickly and to improve the recognition accuracy. We provide a comparative study of three types of local binary patterns (LBP, LGP and NRLBP) and four distance measures (L1, L2, χ2, EMD). The genetic algorithm is also used to optimize parameters such as dimension of histograms. Our results are tested on three different face databases which have the similar properties. We can set these optimal parameters into our face recognition system suitable for the next-generation of hybrid broadcast broadband television.
LBP参数的优化
本文提出了一种基于遗传算法的局部二值模式的最优参数,如模式类型、特征空间中的块大小和距离度量。遗传算法能够快速优化这些参数,提高识别精度。我们对三种类型的局部二元模式(LBP、LGP和NRLBP)和四种距离度量(L1、L2、χ2、EMD)进行了比较研究。遗传算法还用于直方图维数等参数的优化。我们的结果在三个不同的人脸数据库中进行了测试,这些数据库具有相似的属性。我们可以将这些最优参数设置到适合下一代混合广播宽带电视的人脸识别系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信