Gender Identification for Kannada Names

M. A. N., Swaroop L R, S. Hegde, Sourabh U, Rakshith Gowda G S
{"title":"Gender Identification for Kannada Names","authors":"M. A. N., Swaroop L R, S. Hegde, Sourabh U, Rakshith Gowda G S","doi":"10.1109/ICAIT47043.2019.8987346","DOIUrl":null,"url":null,"abstract":"Gender identification using the name of a person, specifically for Kannada names, is a challenging task. We present a classification approach for gender prediction of Kannada names represented in Kannada Unicode. We have determined various features derived from extensive morphological analysis of the names in Kannada. Some of the features identified are indigenous to Kannada Language. In this work we have developed three different classification models using Support Vector Machine (SVM), Random Forest and Naive Bayes machine learning algorithms. Our system reports a top accuracy of 90.1%, F1 score of 90.1% for male names and 90.0% for female names.","PeriodicalId":221994,"journal":{"name":"2019 1st International Conference on Advances in Information Technology (ICAIT)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Advances in Information Technology (ICAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIT47043.2019.8987346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Gender identification using the name of a person, specifically for Kannada names, is a challenging task. We present a classification approach for gender prediction of Kannada names represented in Kannada Unicode. We have determined various features derived from extensive morphological analysis of the names in Kannada. Some of the features identified are indigenous to Kannada Language. In this work we have developed three different classification models using Support Vector Machine (SVM), Random Forest and Naive Bayes machine learning algorithms. Our system reports a top accuracy of 90.1%, F1 score of 90.1% for male names and 90.0% for female names.
卡纳达语姓名的性别识别
用一个人的名字来识别性别,特别是用卡纳达语的名字,是一项具有挑战性的任务。我们提出了一种用卡纳达语Unicode表示的卡纳达语人名性别预测的分类方法。我们从对卡纳达语名字的广泛形态学分析中确定了各种特征。所确定的一些特征是卡纳达语的本土特征。在这项工作中,我们使用支持向量机(SVM)、随机森林和朴素贝叶斯机器学习算法开发了三种不同的分类模型。我们的系统报告最高准确率为90.1%,男性名字的F1分数为90.1%,女性名字的F1分数为90.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信