Inefficiency of Modified VaR and ES

Doug Martin, Rohit Arora
{"title":"Inefficiency of Modified VaR and ES","authors":"Doug Martin, Rohit Arora","doi":"10.2139/ssrn.2692543","DOIUrl":null,"url":null,"abstract":"Modified Value-at-Risk (mVaR) and Modified Expected Shortfall (mES) are risk estimators that can be calculated without modelling the distribution of asset returns. These modified estimators use skewness and kurtosis corrections to normal distribution parametric VaR and ES formulas to reduce bias in risk measurement for non-normal return distributions. However, the use of skewness and kurtosis estimators that are needed to implement mVaR and mES can lead to highly inflated mVaR and mES estimator standard errors. To assess the magnitude of standard error inflation we derive formulas for the large sample standard errors of mVaR and mES using multivariate delta method and compare them against standard errors of parametric VaR and ES estimators, under both normal and t-distributions. Our asymptotic results show that mVaR and mES estimators can have standard errors considerably larger than those of parametric VaR and ES estimators, and small-sample Monte Carlo confirms that the asymptotic results are approximately correct in sample sizes commonly used in practice.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Value-at-Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2692543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Modified Value-at-Risk (mVaR) and Modified Expected Shortfall (mES) are risk estimators that can be calculated without modelling the distribution of asset returns. These modified estimators use skewness and kurtosis corrections to normal distribution parametric VaR and ES formulas to reduce bias in risk measurement for non-normal return distributions. However, the use of skewness and kurtosis estimators that are needed to implement mVaR and mES can lead to highly inflated mVaR and mES estimator standard errors. To assess the magnitude of standard error inflation we derive formulas for the large sample standard errors of mVaR and mES using multivariate delta method and compare them against standard errors of parametric VaR and ES estimators, under both normal and t-distributions. Our asymptotic results show that mVaR and mES estimators can have standard errors considerably larger than those of parametric VaR and ES estimators, and small-sample Monte Carlo confirms that the asymptotic results are approximately correct in sample sizes commonly used in practice.
修正VaR和ES的无效率
修正风险价值(mVaR)和修正预期缺口(mES)是无需建模资产收益分布即可计算的风险估计值。这些改进的估计器使用正态分布参数VaR和ES公式的偏度和峰度修正来减少非正态回报分布风险测量中的偏差。然而,使用实现mVaR和mES所需的偏度和峰度估计器可能导致高度膨胀的mVaR和mES估计器标准误差。为了评估标准误差膨胀的程度,我们使用多元delta方法推导出mVaR和mES的大样本标准误差公式,并将它们与参数VaR和ES估计的标准误差进行比较,在正态分布和t分布下。我们的渐近结果表明,mVaR和mES估计量的标准误差可能比参数VaR和ES估计量的标准误差大得多,并且小样本蒙特卡罗证实了渐近结果在实践中常用的样本量上是近似正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信