The Trend is Your Friend: A Note on An Ensemble Learning Approach to Finding It

Tzu-Pu Chang, Yu-Cheng Chang, Po-Ching Chou
{"title":"The Trend is Your Friend: A Note on An Ensemble Learning Approach to Finding It","authors":"Tzu-Pu Chang, Yu-Cheng Chang, Po-Ching Chou","doi":"10.47260/bae/912","DOIUrl":null,"url":null,"abstract":"The essential goal of trend-following investing is to precisely identify where the uptrend and downtrend are located. This paper thus provides a two-layer stacking technique, which is a novel ensemble learning approach, to predict such trends for the Taiwan Top 50 ETF. The proposed stacking technique stacks the predictors of support vector machine (SVM), multi-layer perception (MLP), adaptive boosting (Adaboost), and extreme gradient boosting (Xgboost), presenting empirical results whereby following the trends obtained from the stacking technique can generate positive returns and beat both conventional moving-average crossover and buy-and-hold strategies.","PeriodicalId":344946,"journal":{"name":"Bulletin of Applied Economics","volume":"813 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Applied Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47260/bae/912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The essential goal of trend-following investing is to precisely identify where the uptrend and downtrend are located. This paper thus provides a two-layer stacking technique, which is a novel ensemble learning approach, to predict such trends for the Taiwan Top 50 ETF. The proposed stacking technique stacks the predictors of support vector machine (SVM), multi-layer perception (MLP), adaptive boosting (Adaboost), and extreme gradient boosting (Xgboost), presenting empirical results whereby following the trends obtained from the stacking technique can generate positive returns and beat both conventional moving-average crossover and buy-and-hold strategies.
趋势是你的朋友:关于寻找趋势的集成学习方法的说明
趋势跟踪投资的基本目标是准确地确定上升趋势和下降趋势的位置。因此,本文提出一种全新的集成学习方法,即双层叠加技术来预测台湾50强ETF的趋势。提出的叠加技术将支持向量机(SVM)、多层感知(MLP)、自适应增强(Adaboost)和极端梯度增强(Xgboost)的预测器叠加在一起,呈现出经验结果,即遵循从叠加技术获得的趋势可以产生正回报,并且击败传统的移动平均交叉和买入并持有策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信