A physical model for skin effect in rough surfaces

G. Gold, K. Helmreich
{"title":"A physical model for skin effect in rough surfaces","authors":"G. Gold, K. Helmreich","doi":"10.23919/EUMC.2012.6459235","DOIUrl":null,"url":null,"abstract":"Insertion loss measured on PCB transmission lines operated in the two-digit Gigahertz range yields responses that exceed those simulated with geometry and material parameters. At such frequencies, the loss due to skin effect can no more be calculated assuming perfectly smooth conductor surfaces, as the skin depth would reach and fall below the dimension of surface roughness. Various phenomenological and topological models have been presented to account for this issue. Phenomenological models tend to need additional parameters to correct for new materials and frequency ranges, while topological models inherently use many parameters and often require significant computation effort. As an alternative, this paper suggests a comprehensive, single-parameter and fast computable physical model that accurately predicts measured responses.","PeriodicalId":243164,"journal":{"name":"2012 7th European Microwave Integrated Circuit Conference","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th European Microwave Integrated Circuit Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUMC.2012.6459235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Insertion loss measured on PCB transmission lines operated in the two-digit Gigahertz range yields responses that exceed those simulated with geometry and material parameters. At such frequencies, the loss due to skin effect can no more be calculated assuming perfectly smooth conductor surfaces, as the skin depth would reach and fall below the dimension of surface roughness. Various phenomenological and topological models have been presented to account for this issue. Phenomenological models tend to need additional parameters to correct for new materials and frequency ranges, while topological models inherently use many parameters and often require significant computation effort. As an alternative, this paper suggests a comprehensive, single-parameter and fast computable physical model that accurately predicts measured responses.
粗糙表面趋肤效应的物理模型
在两位数千兆赫范围内运行的PCB传输线上测量的插入损耗产生的响应超过了用几何和材料参数模拟的响应。在这种频率下,假设导体表面完全光滑,由于趋肤深度将达到并低于表面粗糙度的尺寸,因此无法再计算趋肤效应造成的损耗。已经提出了各种现象学和拓扑模型来解释这个问题。现象学模型往往需要额外的参数来校正新材料和频率范围,而拓扑模型本身使用许多参数,并且通常需要大量的计算工作。作为替代方案,本文提出了一种全面的、单参数的、可快速计算的物理模型,可以准确地预测测量到的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信