TFDroid: Android Malware Detection by Topics and Sensitive Data Flows Using Machine Learning Techniques

Songhao Lou, Shaoyin Cheng, J. Huang, Fan Jiang
{"title":"TFDroid: Android Malware Detection by Topics and Sensitive Data Flows Using Machine Learning Techniques","authors":"Songhao Lou, Shaoyin Cheng, J. Huang, Fan Jiang","doi":"10.1109/INFOCT.2019.8711179","DOIUrl":null,"url":null,"abstract":"With explosive growth of Android malware and due to the severity of its damages to smart phone users, efficient Android malware detection methods are urgently needed. As is known to us, different categories of applications divided by their functions use sensitive data in distinct ways. Besides, in each category, malicious applications treat sensitive data differently from benign applications. We thus propose TFDroid, a novel machine learning-based approach to detect malware using the related topics and data flows of Android applications. We test TFDroid on thousands of benign and malicious applications. The results show that TFDroid can correctly identify 93.7% of all malware.","PeriodicalId":369231,"journal":{"name":"2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCT.2019.8711179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

With explosive growth of Android malware and due to the severity of its damages to smart phone users, efficient Android malware detection methods are urgently needed. As is known to us, different categories of applications divided by their functions use sensitive data in distinct ways. Besides, in each category, malicious applications treat sensitive data differently from benign applications. We thus propose TFDroid, a novel machine learning-based approach to detect malware using the related topics and data flows of Android applications. We test TFDroid on thousands of benign and malicious applications. The results show that TFDroid can correctly identify 93.7% of all malware.
TFDroid: Android恶意软件检测的主题和敏感数据流使用机器学习技术
随着Android恶意软件的爆炸性增长,以及其对智能手机用户造成的严重危害,迫切需要高效的Android恶意软件检测方法。众所周知,按功能划分的不同类别的应用程序以不同的方式使用敏感数据。此外,在每个类别中,恶意应用程序对敏感数据的处理方式与良性应用程序不同。因此,我们提出了TFDroid,这是一种基于机器学习的新方法,可以使用Android应用程序的相关主题和数据流来检测恶意软件。我们在数千种良性和恶意应用程序上测试了TFDroid。结果表明,TFDroid能够正确识别93.7%的恶意软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信