Improvements on the k-center Problem for Uncertain Data

Sharareh Alipour, A. Jafari
{"title":"Improvements on the k-center Problem for Uncertain Data","authors":"Sharareh Alipour, A. Jafari","doi":"10.1145/3196959.3196969","DOIUrl":null,"url":null,"abstract":"In real applications, there are situations where we need to model some problems based on uncertain data. This leads us to define an uncertain model for some classical geometric optimization problems and propose algorithms to solve them. The assigned version of the k-center problem for n uncertain points in a metric space is studied in this paper. The main approach is to replace each uncertain point with a clever choice of a certain point. We argue that the k-center solution for these certain replacements of our uncertain points, is a good constant approximation factor for the original uncertain k-center problem. This approach enables us to present fast and simple algorithms that give 10-approximation solution for the k-center problem in any metric space and when the ambient space is Euclidean, it can be improved to (3+ε)-approximation for any ε>0. These algorithms improve both the approximation factor and the running time of the previously known algorithms. Also, our algorithms are suitable for applying in the case of streaming and big data.","PeriodicalId":344370,"journal":{"name":"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3196959.3196969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In real applications, there are situations where we need to model some problems based on uncertain data. This leads us to define an uncertain model for some classical geometric optimization problems and propose algorithms to solve them. The assigned version of the k-center problem for n uncertain points in a metric space is studied in this paper. The main approach is to replace each uncertain point with a clever choice of a certain point. We argue that the k-center solution for these certain replacements of our uncertain points, is a good constant approximation factor for the original uncertain k-center problem. This approach enables us to present fast and simple algorithms that give 10-approximation solution for the k-center problem in any metric space and when the ambient space is Euclidean, it can be improved to (3+ε)-approximation for any ε>0. These algorithms improve both the approximation factor and the running time of the previously known algorithms. Also, our algorithms are suitable for applying in the case of streaming and big data.
不确定数据k中心问题的改进
在实际应用中,我们需要基于不确定的数据对一些问题进行建模。这导致我们定义了一些经典几何优化问题的不确定模型,并提出了求解这些问题的算法。本文研究了度量空间中n个不确定点的k中心问题的赋值形式。主要的方法是用某一点的巧妙选择来代替每一个不确定点。我们认为,这些不确定点的某些替换的k中心解,是原始不确定k中心问题的一个很好的常数近似因子。这种方法使我们能够提供快速和简单的算法,在任何度量空间中给出k中心问题的10近似解,当环境空间是欧几里得时,对于任何ε>0,它可以改进为(3+ε)近似。这些算法改进了先前已知算法的近似因子和运行时间。同时,我们的算法也适用于流数据和大数据的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信