David Becerra, A. Sandoval, Daniel Restrepo-Montoya, L. F. Niño
{"title":"A parallel multi-objective ab initio approach for protein structure prediction","authors":"David Becerra, A. Sandoval, Daniel Restrepo-Montoya, L. F. Niño","doi":"10.1109/BIBM.2010.5706552","DOIUrl":null,"url":null,"abstract":"Protein structure prediction is one of the most important problems in bioinformatics and structural biology. This work proposes a novel and suitable methodology to model protein structure prediction with atomic-level detail by using a parallel multi-objective ab initio approach. In the proposed model, i) A trigonometric representation is used to compute backbone and side-chain torsion angles of protein atoms; ii) The Chemistry at HARvard Macromolecular Mechanics (CHARMm) function optimizes and evaluates the structures of the protein conformations; iii) The evolution of protein conformations is directed by optimization of protein energy contributions using the multi-objective genetic algorithm NSGA-II; and iv) The computation process is sped up and its effectiveness improved through the implementation of an island model of the evolutionary algorithm. The proposed model was validated on a set of benchmark proteins obtaining very promising results.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Protein structure prediction is one of the most important problems in bioinformatics and structural biology. This work proposes a novel and suitable methodology to model protein structure prediction with atomic-level detail by using a parallel multi-objective ab initio approach. In the proposed model, i) A trigonometric representation is used to compute backbone and side-chain torsion angles of protein atoms; ii) The Chemistry at HARvard Macromolecular Mechanics (CHARMm) function optimizes and evaluates the structures of the protein conformations; iii) The evolution of protein conformations is directed by optimization of protein energy contributions using the multi-objective genetic algorithm NSGA-II; and iv) The computation process is sped up and its effectiveness improved through the implementation of an island model of the evolutionary algorithm. The proposed model was validated on a set of benchmark proteins obtaining very promising results.