{"title":"Upper bound on function computation in directed acyclic networks","authors":"Cupjin Huang, Zihan Tan, Shenghao Yang","doi":"10.1109/ITW.2015.7133086","DOIUrl":null,"url":null,"abstract":"Function computation in directed acyclic networks is considered, where a sink node wants to compute a target function with the inputs generated at multiple source nodes. The network links are error-free but capacity-limited, and the intermediate network nodes perform network coding. The target function is required to be computed with zero error. The computing rate of a network code is measured by the average number of times that the target function can be computed for one use of the network. We propose a cut-set bound on the computing rate using an equivalence relation associated with the inputs of the target function. Our bound holds for general target functions and network topologies. We also show that our bound is tight for some special cases where the computing capacity can be characterized.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Function computation in directed acyclic networks is considered, where a sink node wants to compute a target function with the inputs generated at multiple source nodes. The network links are error-free but capacity-limited, and the intermediate network nodes perform network coding. The target function is required to be computed with zero error. The computing rate of a network code is measured by the average number of times that the target function can be computed for one use of the network. We propose a cut-set bound on the computing rate using an equivalence relation associated with the inputs of the target function. Our bound holds for general target functions and network topologies. We also show that our bound is tight for some special cases where the computing capacity can be characterized.