S. Wada, T. Maeda, M. Tokushima, J. Yamazaki, M. Ishikawa, M. Fujii
{"title":"A 27/GHz/151 mW GaAs 256/258 dual-modulus prescaler IC with 0.1 /spl mu/m double-deck-shaped (DDS) gate E/D-HJFETs","authors":"S. Wada, T. Maeda, M. Tokushima, J. Yamazaki, M. Ishikawa, M. Fujii","doi":"10.1109/GAAS.1998.722645","DOIUrl":null,"url":null,"abstract":"We have developed 0.1-/spl mu/m double-deck-shaped (DDS) gate enhancement-mode (E) and depletion-mode (D) heterojunction (HJ) FET technology based upon an all-dry-etching process, which enables high current-gain cut-off frequencies (f/sub T/) in both E- and D-mode FETs above 100 GHz. We also report the first 256/258 dual-modulus prescaler IC operating above 20 GHz with low power consumption. Obtained maximum input frequency for the prescaler was 27 GHz with power consumption of 151 mW at a supply voltage of 1.2 V. This power consumption is about 1/50 of the value extrapolated from ones reported for prescalers.","PeriodicalId":288170,"journal":{"name":"GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 20th Annual. Technical Digest 1998 (Cat. No.98CH36260)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 20th Annual. Technical Digest 1998 (Cat. No.98CH36260)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GAAS.1998.722645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
We have developed 0.1-/spl mu/m double-deck-shaped (DDS) gate enhancement-mode (E) and depletion-mode (D) heterojunction (HJ) FET technology based upon an all-dry-etching process, which enables high current-gain cut-off frequencies (f/sub T/) in both E- and D-mode FETs above 100 GHz. We also report the first 256/258 dual-modulus prescaler IC operating above 20 GHz with low power consumption. Obtained maximum input frequency for the prescaler was 27 GHz with power consumption of 151 mW at a supply voltage of 1.2 V. This power consumption is about 1/50 of the value extrapolated from ones reported for prescalers.