ApesNet

Chunpeng Wu, Hsin-Pai Cheng, Sicheng Li, H. Li, Yiran Chen
{"title":"ApesNet","authors":"Chunpeng Wu, Hsin-Pai Cheng, Sicheng Li, H. Li, Yiran Chen","doi":"10.1145/2993452.2994306","DOIUrl":null,"url":null,"abstract":"Autonomous driving can effectively reduce traffic congestion and road accidents. Therefore, it is necessary to implement an efficient high-level, scene understanding model in an embedded device with limited power and sources. Toward this goal, we propose ApesNet, an efficient pixel-wise segmentation network, which understands road scenes in real-time, and has achieved promising accuracy. The key findings in our experiments are significantly lower the classification time and achieve a high accuracy compared to other conventional segmentation methods. The model is characterized by an efficient training and a sufficient fast testing. Experimentally, we use the well-known CamVid road scene dataset to show the advantages provided by our contributions. We compare our proposed architecture's accuracy and time performance with SegNet. In CamVid dataset training and testing, our network, ApesNet outperform SegNet in eight classes accuracy. Additionally, our model size is 37% smaller than SegNet. With this advantage, the combining encoding and decoding time for each image is 1.45 to 2.47 times faster than SegNet.","PeriodicalId":276514,"journal":{"name":"Proceedings of the 14th ACM/IEEE Symposium on Embedded Systems for Real-Time Multimedia","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th ACM/IEEE Symposium on Embedded Systems for Real-Time Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2993452.2994306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Autonomous driving can effectively reduce traffic congestion and road accidents. Therefore, it is necessary to implement an efficient high-level, scene understanding model in an embedded device with limited power and sources. Toward this goal, we propose ApesNet, an efficient pixel-wise segmentation network, which understands road scenes in real-time, and has achieved promising accuracy. The key findings in our experiments are significantly lower the classification time and achieve a high accuracy compared to other conventional segmentation methods. The model is characterized by an efficient training and a sufficient fast testing. Experimentally, we use the well-known CamVid road scene dataset to show the advantages provided by our contributions. We compare our proposed architecture's accuracy and time performance with SegNet. In CamVid dataset training and testing, our network, ApesNet outperform SegNet in eight classes accuracy. Additionally, our model size is 37% smaller than SegNet. With this advantage, the combining encoding and decoding time for each image is 1.45 to 2.47 times faster than SegNet.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信