Building Near-Real-Time MODIS Data Fusion Workflow to Support Agricultural Decision-making Applications

Li Lin, L. Di, Chen Zhang, Liying Guo, Junmei Tang, E. Yu, M. S. Rahman, Haoteng Zhao, Zhiqi Yu, Ziheng Sun, Juozas Gaigalas
{"title":"Building Near-Real-Time MODIS Data Fusion Workflow to Support Agricultural Decision-making Applications","authors":"Li Lin, L. Di, Chen Zhang, Liying Guo, Junmei Tang, E. Yu, M. S. Rahman, Haoteng Zhao, Zhiqi Yu, Ziheng Sun, Juozas Gaigalas","doi":"10.1109/Agro-Geoinformatics.2019.8820229","DOIUrl":null,"url":null,"abstract":"WaterSmart project is an NSF funded projected seeks water consumption reduction using satellite observations. In order to fit the fine temporal resolution requirement, satellites are required to have a high revisit cycle. MODIS is an ideal platform for monitoring the ground thanks to its daily coverage while the spatial resolution is too coarse. Research has demonstrated the possibility to improve the spatial resolution of MODIS using the Landsat 8 images. This research is aimed to establish a workflow to adapt the data fusion algorithm to achieve automatically processing at real-time in order to support short-term decision making.","PeriodicalId":143731,"journal":{"name":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Agro-Geoinformatics.2019.8820229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

WaterSmart project is an NSF funded projected seeks water consumption reduction using satellite observations. In order to fit the fine temporal resolution requirement, satellites are required to have a high revisit cycle. MODIS is an ideal platform for monitoring the ground thanks to its daily coverage while the spatial resolution is too coarse. Research has demonstrated the possibility to improve the spatial resolution of MODIS using the Landsat 8 images. This research is aimed to establish a workflow to adapt the data fusion algorithm to achieve automatically processing at real-time in order to support short-term decision making.
构建近实时MODIS数据融合工作流支持农业决策应用
WaterSmart项目是美国国家科学基金会资助的一个项目,旨在利用卫星观测减少用水量。为了满足精细的时间分辨率要求,卫星需要具有较高的重访周期。在空间分辨率过于粗糙的情况下,MODIS的日常覆盖是一个理想的地面监测平台。研究已经证明了利用Landsat 8图像提高MODIS空间分辨率的可能性。本研究旨在建立一种适应数据融合算法的工作流,实现实时的自动处理,以支持短期决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信