Exploiting Parallelism on GPUs and FPGAs with OmpSs

ANDARE '17 Pub Date : 2017-09-09 DOI:10.1145/3152821.3152880
Jaume Bosch, Antonio Filgueras, Miquel Vidal Piñol, Daniel Jiménez-González, C. Álvarez, X. Martorell
{"title":"Exploiting Parallelism on GPUs and FPGAs with OmpSs","authors":"Jaume Bosch, Antonio Filgueras, Miquel Vidal Piñol, Daniel Jiménez-González, C. Álvarez, X. Martorell","doi":"10.1145/3152821.3152880","DOIUrl":null,"url":null,"abstract":"This paper presents the OmpSs approach to deal with heterogeneous programming on GPU and FPGA accelerators. The OmpSs programming model is based on the Mercurium compiler and the Nanos++ runtime. Applications are annotated with compiler directives specifying task-based parallelism. The Mercurium compiler transforms the code to exploit the parallelism in the SMP host cores, and also to spawn work on CUDA/OpenCL devices, and FPGA accelerators. For the CUDA/OpenCL devices, the programmer needs only to insert the annotations and provide the kernel function to be compiled by the native CUDA/OpenCL compiler. In the case of the FPGAs, OmpSs uses the High-Level Synthesis tools from FPGA vendors to generate the IP configurations for the FPGA. In this paper we present the performance obtained on the matrix multiply benchmark in the Xilinx Zynq Ultrascale+, as a result of using OmpSs on this benchmark.","PeriodicalId":227417,"journal":{"name":"ANDARE '17","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANDARE '17","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3152821.3152880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper presents the OmpSs approach to deal with heterogeneous programming on GPU and FPGA accelerators. The OmpSs programming model is based on the Mercurium compiler and the Nanos++ runtime. Applications are annotated with compiler directives specifying task-based parallelism. The Mercurium compiler transforms the code to exploit the parallelism in the SMP host cores, and also to spawn work on CUDA/OpenCL devices, and FPGA accelerators. For the CUDA/OpenCL devices, the programmer needs only to insert the annotations and provide the kernel function to be compiled by the native CUDA/OpenCL compiler. In the case of the FPGAs, OmpSs uses the High-Level Synthesis tools from FPGA vendors to generate the IP configurations for the FPGA. In this paper we present the performance obtained on the matrix multiply benchmark in the Xilinx Zynq Ultrascale+, as a result of using OmpSs on this benchmark.
利用compps开发gpu和fpga的并行性
本文介绍了在GPU和FPGA加速器上处理异构编程的OmpSs方法。OmpSs编程模型基于Mercurium编译器和nano++运行时。应用程序用指定基于任务的并行性的编译器指令进行注释。Mercurium编译器对代码进行转换,以利用SMP主机内核中的并行性,并在CUDA/OpenCL设备和FPGA加速器上生成工作。对于CUDA/OpenCL设备,程序员只需要插入注释并提供内核函数,由本地CUDA/OpenCL编译器编译。在FPGA的情况下,omps使用FPGA供应商的高级合成工具为FPGA生成IP配置。在本文中,我们介绍了在Xilinx Zynq Ultrascale+中使用omps在矩阵乘法基准测试上获得的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信