Cough Classification Using Audio Spectrogram Transformer

K. Habashy, J. J. Valdés, Madison Cohen-McFarlane, Pengcheng Xi, Bruce Wallace, R. Goubran, F. Knoefel
{"title":"Cough Classification Using Audio Spectrogram Transformer","authors":"K. Habashy, J. J. Valdés, Madison Cohen-McFarlane, Pengcheng Xi, Bruce Wallace, R. Goubran, F. Knoefel","doi":"10.1109/SAS54819.2022.9881344","DOIUrl":null,"url":null,"abstract":"A variety of technologies can support aging in place, including smart home sensing that can enable independent living through real-time data analysis. In this work, we study cough sound analysis as the cough is a key symptom of many respiratory illnesses and conditions. Based on a data set of cough recordings, we propose a two-pronged approach: the first leverages unsupervised learning to compute intrinsic dimensions of the data and maps raw data for visualizations, and the second uses the insight to train machine learning models through transfer learning on Vision Transformer models. Data augmentation approaches are implemented to improve the performance of the models and our top-performing model achieves an F1-score of 0.804. This study suggests the feasibility of using smart sensing and deep learning for gaining insights into the health of older adults.","PeriodicalId":129732,"journal":{"name":"2022 IEEE Sensors Applications Symposium (SAS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS54819.2022.9881344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A variety of technologies can support aging in place, including smart home sensing that can enable independent living through real-time data analysis. In this work, we study cough sound analysis as the cough is a key symptom of many respiratory illnesses and conditions. Based on a data set of cough recordings, we propose a two-pronged approach: the first leverages unsupervised learning to compute intrinsic dimensions of the data and maps raw data for visualizations, and the second uses the insight to train machine learning models through transfer learning on Vision Transformer models. Data augmentation approaches are implemented to improve the performance of the models and our top-performing model achieves an F1-score of 0.804. This study suggests the feasibility of using smart sensing and deep learning for gaining insights into the health of older adults.
利用声谱图变压器进行咳嗽分类
各种各样的技术可以支持就地老龄化,包括通过实时数据分析实现独立生活的智能家居传感。在这项工作中,我们研究咳嗽声分析,因为咳嗽是许多呼吸系统疾病和病症的关键症状。基于咳嗽记录的数据集,我们提出了一种双管齐下的方法:第一种方法利用无监督学习来计算数据的内在维度,并将原始数据映射为可视化,第二种方法利用洞察力通过在Vision Transformer模型上的迁移学习来训练机器学习模型。采用数据增强方法来提高模型的性能,我们表现最好的模型达到了0.804的f1分数。这项研究表明,利用智能传感和深度学习来了解老年人的健康状况是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信