C. Olson, Maria Kim, Cooper Clauson, B. Kogon, C. Ebeling, S. Hauck, W. L. Ruzzo
{"title":"Hardware Acceleration of Short Read Mapping","authors":"C. Olson, Maria Kim, Cooper Clauson, B. Kogon, C. Ebeling, S. Hauck, W. L. Ruzzo","doi":"10.1109/FCCM.2012.36","DOIUrl":null,"url":null,"abstract":"Bioinformatics is an emerging field with seemingly limitless possibilities for advances in numerous areas of research and applications. We propose a scalable FPGA-based solution to the short read mapping problem in DNA sequencing, which greatly accelerates the task of aligning short length reads to a known reference genome. We compare the runtime, power consumption, and sensitivity of the hardware system to the BFAST and Bowtie software tools. The hardware system demonstrates a 250X speedup versus BFAST and a 31X speedup versus Bowtie on eight CPU cores. Also, the hardware system is more sensitive than Bowtie, which aligns approximately 80% of the short reads, as compared to 91% aligned by the hardware.","PeriodicalId":226197,"journal":{"name":"2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"116","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2012.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 116
Abstract
Bioinformatics is an emerging field with seemingly limitless possibilities for advances in numerous areas of research and applications. We propose a scalable FPGA-based solution to the short read mapping problem in DNA sequencing, which greatly accelerates the task of aligning short length reads to a known reference genome. We compare the runtime, power consumption, and sensitivity of the hardware system to the BFAST and Bowtie software tools. The hardware system demonstrates a 250X speedup versus BFAST and a 31X speedup versus Bowtie on eight CPU cores. Also, the hardware system is more sensitive than Bowtie, which aligns approximately 80% of the short reads, as compared to 91% aligned by the hardware.