Generating power-optimal standard cell library specification using neural network technique

S. Lim, Y. W. Lim, S. Mashohor, N. Kamsani, R. Sidek, S. J. Hashim, F. Rokhani
{"title":"Generating power-optimal standard cell library specification using neural network technique","authors":"S. Lim, Y. W. Lim, S. Mashohor, N. Kamsani, R. Sidek, S. J. Hashim, F. Rokhani","doi":"10.1109/PRIMEASIA.2017.8280374","DOIUrl":null,"url":null,"abstract":"In VLSI semi-custom design approach, power-optimal standard cell library selection for a given block design requires time-consuming iterative processes. This paper presents a framework to select a standard cell library that can result in near-optimal power while satisfying targeted frequency. The framework relies on neural network model to quickly predict the total power of a block design associated with a given standard cell library in order to speed up the synthesis process. The experimental result based on various synthesized benchmark circuits demonstrated the effectiveness of proposed framework for near-optimal standard cell library specification.","PeriodicalId":335218,"journal":{"name":"2017 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIMEASIA.2017.8280374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In VLSI semi-custom design approach, power-optimal standard cell library selection for a given block design requires time-consuming iterative processes. This paper presents a framework to select a standard cell library that can result in near-optimal power while satisfying targeted frequency. The framework relies on neural network model to quickly predict the total power of a block design associated with a given standard cell library in order to speed up the synthesis process. The experimental result based on various synthesized benchmark circuits demonstrated the effectiveness of proposed framework for near-optimal standard cell library specification.
利用神经网络技术生成功率最优标准单元库规范
在VLSI半定制设计方法中,针对给定的模块设计选择功率最优的标准单元库需要耗时的迭代过程。本文提出了一个选择标准单元库的框架,该标准单元库可以在满足目标频率的同时产生接近最优的功率。该框架依靠神经网络模型快速预测与给定标准细胞库相关联的块设计的总功率,以加快合成过程。基于各种合成基准电路的实验结果证明了该框架对近最优标准单元库规范的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信