{"title":"Data-Driven Inverse Optimization for Marginal Offer Price Recovery in Electricity Markets","authors":"Zhirui Liang, Y. Dvorkin","doi":"10.1145/3575813.3597356","DOIUrl":null,"url":null,"abstract":"This paper presents a data-driven inverse optimization (IO) approach to recover the marginal offer prices of generators in a wholesale energy market. By leveraging underlying market-clearing processes, we establish a closed-form relationship between the unknown parameters and the publicly available market-clearing results. Based on this relationship, we formulate the data-driven IO problem as a computationally feasible single-level optimization problem. The solution of the data-driven model is based on the gradient descent method, which provides an error bound on the optimal solution and a sub-linear convergence rate. We also rigorously prove the existence and uniqueness of the global optimum to the proposed data-driven IO problem and analyze its robustness in two possible noisy settings. The effectiveness of the proposed method is demonstrated through simulations in both an illustrative IEEE 14-bus system and a realistic NYISO 1814-bus system.","PeriodicalId":359352,"journal":{"name":"Proceedings of the 14th ACM International Conference on Future Energy Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th ACM International Conference on Future Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575813.3597356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a data-driven inverse optimization (IO) approach to recover the marginal offer prices of generators in a wholesale energy market. By leveraging underlying market-clearing processes, we establish a closed-form relationship between the unknown parameters and the publicly available market-clearing results. Based on this relationship, we formulate the data-driven IO problem as a computationally feasible single-level optimization problem. The solution of the data-driven model is based on the gradient descent method, which provides an error bound on the optimal solution and a sub-linear convergence rate. We also rigorously prove the existence and uniqueness of the global optimum to the proposed data-driven IO problem and analyze its robustness in two possible noisy settings. The effectiveness of the proposed method is demonstrated through simulations in both an illustrative IEEE 14-bus system and a realistic NYISO 1814-bus system.