The Schoenflies Theorem after Mazur, Morse, and Brown

Stefan Behrens, Allison N. Miller, M. Nagel, P. Teichner
{"title":"The Schoenflies Theorem after Mazur, Morse, and Brown","authors":"Stefan Behrens, Allison N. Miller, M. Nagel, P. Teichner","doi":"10.1093/oso/9780198841319.003.0003","DOIUrl":null,"url":null,"abstract":"‘The Schoenflies Theorem after Mazur, Morse, and Brown’ provides two proofs of the Schoenflies theorem. The Schoenflies theorem states that every bicollared embedding of an (n – 1)-sphere in the n-sphere splits the n-sphere into two balls. This chapter provides two proofs. The first is due to Mazur and Morse; it utilizes an infinite ‘swindle’ and a classical technique called push-pull. The second proof, due to Brown, serves as an introduction to shrinking, or decomposition space theory. The latter is a beautiful, but outmoded, branch of topology that can be used to produce non-differentiable homeomorphisms between manifolds, especially from a manifold to a quotient space. Techniques from decomposition space theory are essential in the proof of the disc embedding theorem.","PeriodicalId":272723,"journal":{"name":"The Disc Embedding Theorem","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Disc Embedding Theorem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198841319.003.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

‘The Schoenflies Theorem after Mazur, Morse, and Brown’ provides two proofs of the Schoenflies theorem. The Schoenflies theorem states that every bicollared embedding of an (n – 1)-sphere in the n-sphere splits the n-sphere into two balls. This chapter provides two proofs. The first is due to Mazur and Morse; it utilizes an infinite ‘swindle’ and a classical technique called push-pull. The second proof, due to Brown, serves as an introduction to shrinking, or decomposition space theory. The latter is a beautiful, but outmoded, branch of topology that can be used to produce non-differentiable homeomorphisms between manifolds, especially from a manifold to a quotient space. Techniques from decomposition space theory are essential in the proof of the disc embedding theorem.
继Mazur, Morse和Brown之后的舍恩菲斯定理
《继Mazur、Morse和Brown之后的舍恩菲斯定理》提供了舍恩菲斯定理的两个证明。舍恩菲斯定理指出,(n - 1)球在n球中的每一个双圈嵌入都将n球分割成两个球。本章提供了两个证明。第一个是马祖尔和莫尔斯;它利用了一种无限的“骗局”和一种叫做推拉的经典技术。第二个证明是由布朗提出的,作为收缩或分解空间理论的介绍。后者是一个漂亮但过时的拓扑分支,可以用来产生流形之间的不可微同胚,特别是从流形到商空间。在圆盘嵌入定理的证明中,分解空间理论中的技术是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信