Multiactor approach and hexapod robot learning

Y. Zennir, P. Couturier
{"title":"Multiactor approach and hexapod robot learning","authors":"Y. Zennir, P. Couturier","doi":"10.1109/CIRA.2005.1554353","DOIUrl":null,"url":null,"abstract":"This paper presents a multiactor approach of the Q-learning used to teach a hexapod robot to control its trajectory. So, each actor participating to the same global task performs its own learning process taking into account or not the other agents. As any actor \"leg of hexapod robot\" cannot achieve its movements without interacting with others, co-ordination may be set up. This \"co-ordination with actors\" approach is applied to solve the problems of displacement, trajectory and posture control of a hexapod robot in its environment. The efficiency of the approach is validated through simulation results.","PeriodicalId":162553,"journal":{"name":"2005 International Symposium on Computational Intelligence in Robotics and Automation","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Symposium on Computational Intelligence in Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRA.2005.1554353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a multiactor approach of the Q-learning used to teach a hexapod robot to control its trajectory. So, each actor participating to the same global task performs its own learning process taking into account or not the other agents. As any actor "leg of hexapod robot" cannot achieve its movements without interacting with others, co-ordination may be set up. This "co-ordination with actors" approach is applied to solve the problems of displacement, trajectory and posture control of a hexapod robot in its environment. The efficiency of the approach is validated through simulation results.
多因素方法与六足机器人学习
本文提出了一种多因素q学习方法,用于教六足机器人控制其轨迹。因此,参与相同全局任务的每个参与者执行自己的学习过程,考虑到其他代理是否存在。由于任何演员“六足机器人的腿”都不能在没有与他人互动的情况下完成运动,因此可以建立协调。将这种“与参与者协调”的方法应用于解决六足机器人在其环境中的位移、轨迹和姿态控制问题。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信