State Estimator and Machine Learning Analysis of Residual Differences to Detect and Identify FDI and Parameter Errors in Smart Grids

Keerthiraj Nagaraj, Nader Aljohani, Sheng Zou, Cody Ruben, A. Bretas, Alina Zare, J. Mcnair
{"title":"State Estimator and Machine Learning Analysis of Residual Differences to Detect and Identify FDI and Parameter Errors in Smart Grids","authors":"Keerthiraj Nagaraj, Nader Aljohani, Sheng Zou, Cody Ruben, A. Bretas, Alina Zare, J. Mcnair","doi":"10.1109/NAPS50074.2021.9449772","DOIUrl":null,"url":null,"abstract":"In the modern Smart Grid (SG), cyber-security is an increasingly important topic of research. An attacker can mislead the State Estimation (SE) process through a False Data Injection (FDI) on real-time measurement values or they can attack the parameters of the network that represent the system topology. While research has been done in SE bad data analysis, parameter attacks have proven to be difficult to distinguish from FDI attacks using physics-based techniques. Machine learning (ML) techniques have recently been used to enhance the detection of FDI attacks in an algorithm called Ensemble CorrDet with Adaptive Statistics (ECD-AS). ECD-AS, as developed, analyzes the real-time measurement values throughout the SG to detect FDI attacks. Parameter attacks, on the other hand, don't impact the measurements. Instead, the estimate of state variables of SE will be affected. This paper presents a collaborative framework of ML and SE for detection and identification of errors in system measurements and parameters. The residual difference space is introduced, created from the physics-based SE and ML-based measurement estimation processes, and analyzed by ECD-AS. A case study on the IEEE 118-bus system is presented. Numerical results show that the presented framework outperforms state-of-the-art method in detecting and identifying both FDI and parameter attacks.","PeriodicalId":170486,"journal":{"name":"2020 52nd North American Power Symposium (NAPS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 52nd North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS50074.2021.9449772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In the modern Smart Grid (SG), cyber-security is an increasingly important topic of research. An attacker can mislead the State Estimation (SE) process through a False Data Injection (FDI) on real-time measurement values or they can attack the parameters of the network that represent the system topology. While research has been done in SE bad data analysis, parameter attacks have proven to be difficult to distinguish from FDI attacks using physics-based techniques. Machine learning (ML) techniques have recently been used to enhance the detection of FDI attacks in an algorithm called Ensemble CorrDet with Adaptive Statistics (ECD-AS). ECD-AS, as developed, analyzes the real-time measurement values throughout the SG to detect FDI attacks. Parameter attacks, on the other hand, don't impact the measurements. Instead, the estimate of state variables of SE will be affected. This paper presents a collaborative framework of ML and SE for detection and identification of errors in system measurements and parameters. The residual difference space is introduced, created from the physics-based SE and ML-based measurement estimation processes, and analyzed by ECD-AS. A case study on the IEEE 118-bus system is presented. Numerical results show that the presented framework outperforms state-of-the-art method in detecting and identifying both FDI and parameter attacks.
状态估计和机器学习残差分析在智能电网中检测和识别FDI和参数误差
在现代智能电网中,网络安全是一个日益重要的研究课题。攻击者可以通过对实时测量值进行虚假数据注入(FDI)来误导状态估计(SE)过程,也可以攻击代表系统拓扑的网络参数。虽然在SE不良数据分析方面已经进行了研究,但事实证明,使用基于物理的技术很难将参数攻击与FDI攻击区分开来。机器学习(ML)技术最近被用于增强对FDI攻击的检测,该算法称为自适应统计集成cordet (ECD-AS)。开发的ECD-AS分析整个SG的实时测量值,以检测FDI攻击。另一方面,参数攻击不会影响度量。相反,会影响SE状态变量的估计。本文提出了一个ML和SE的协作框架,用于检测和识别系统测量和参数中的错误。引入残差空间,从基于物理的SE和基于ml的测量估计过程中创建,并通过ECD-AS进行分析。以IEEE 118总线系统为例进行了研究。数值结果表明,该框架在检测和识别FDI攻击和参数攻击方面优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信