An Analytical Approximate Solution of Linear, System of Linear and Non Linear Volterra Integral Equations Using Variational Iteration Method

S. S. Sheth, Dr. T. R. Singh
{"title":"An Analytical Approximate Solution of Linear, System of Linear and Non Linear Volterra Integral Equations Using Variational Iteration Method","authors":"S. S. Sheth, Dr. T. R. Singh","doi":"10.2139/ssrn.3462950","DOIUrl":null,"url":null,"abstract":"In this paper we have solved Linear Volterra Integral Equations (LVIE), System of Linear Volterra Integral Equation (SLVIE) and non Linear Volterra Integral Equation (NLVIE) using variational Iteration Method (VIM). VIM is a powerful tool to solve the differential equations as well as integral equations. VIM gives consecutive approximations which converge rapidly to the exact solution in the given domain for the given initial condition, if it exists, without any transformation or any restrictive assumptions to non linear terms, which may change the physical behaviour of the problem, otherwise few approximations are enough only for numerical purposes. To exhibit the ability, accuracy and reliability of the method we have provided two problems of Linear Volterra Integral Equations, one problem of system of Linear Volterra Integral Equation and one problem of Non Linear Volterra Integral Equation. The study highlights the heaviness of the method.","PeriodicalId":144644,"journal":{"name":"International Conference on Advancements in Computing & Management (ICACM) 2019 (Archive)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Advancements in Computing & Management (ICACM) 2019 (Archive)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3462950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we have solved Linear Volterra Integral Equations (LVIE), System of Linear Volterra Integral Equation (SLVIE) and non Linear Volterra Integral Equation (NLVIE) using variational Iteration Method (VIM). VIM is a powerful tool to solve the differential equations as well as integral equations. VIM gives consecutive approximations which converge rapidly to the exact solution in the given domain for the given initial condition, if it exists, without any transformation or any restrictive assumptions to non linear terms, which may change the physical behaviour of the problem, otherwise few approximations are enough only for numerical purposes. To exhibit the ability, accuracy and reliability of the method we have provided two problems of Linear Volterra Integral Equations, one problem of system of Linear Volterra Integral Equation and one problem of Non Linear Volterra Integral Equation. The study highlights the heaviness of the method.
变分迭代法求解线性、线性和非线性Volterra积分方程组的解析近似解
本文用变分迭代法求解了线性Volterra积分方程(LVIE)、线性Volterra积分方程系统(SLVIE)和非线性Volterra积分方程(NLVIE)。VIM是求解微分方程和积分方程的强大工具。在给定初始条件下,VIM给出连续逼近,这些逼近迅速收敛到给定域内的精确解,如果它存在,则不需要对可能改变问题物理行为的非线性项进行任何变换或任何限制性假设,否则很少的逼近仅用于数值目的就足够了。为了展示该方法的能力、准确性和可靠性,我们给出了两个线性Volterra积分方程问题、一个线性Volterra积分方程方程组问题和一个非线性Volterra积分方程问题。这项研究凸显了这种方法的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信