Transformation invariant SOM clustering in Document Image Analysis

S. Marinai, E. Marino, G. Soda
{"title":"Transformation invariant SOM clustering in Document Image Analysis","authors":"S. Marinai, E. Marino, G. Soda","doi":"10.1109/ICIAP.2007.126","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the combination of the self organizing map (SOM) and of the tangent distance for effective clustering in document image analysis. The proposed model (SOM_TD) is used for character and layout clustering, with applications to word retrieval and to page classification. By using the tangent distance it is possible to improve the SOM clustering so as to be more tolerant with respect to small local transformations of the input patterns.","PeriodicalId":118466,"journal":{"name":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2007.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose the combination of the self organizing map (SOM) and of the tangent distance for effective clustering in document image analysis. The proposed model (SOM_TD) is used for character and layout clustering, with applications to word retrieval and to page classification. By using the tangent distance it is possible to improve the SOM clustering so as to be more tolerant with respect to small local transformations of the input patterns.
变换不变SOM聚类在文档图像分析中的应用
本文提出了将自组织映射(SOM)和切线距离相结合的方法用于文档图像分析中的有效聚类。所提出的模型(SOM_TD)用于字符和布局聚类,并应用于单词检索和页面分类。通过使用切线距离,可以改进SOM聚类,以便对输入模式的小局部变换具有更大的容忍度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信