{"title":"On Adjacency and e-Adjacency in General Hypergraphs: Towards a New e-Adjacency Tensor","authors":"X. Ouvrard , J.M. Le Goff , S. Marchand-Maillet","doi":"10.1016/j.endm.2018.11.012","DOIUrl":null,"url":null,"abstract":"<div><p>In graphs, the concept of adjacency is clearly defined: it is a pairwise relationship between vertices. Adjacency in hypergraphs has to integrate hyperedge multi-adicity: the concept of adjacency needs to be defined properly by introducing two new concepts: <em>k</em>-adjacency – <em>k</em> vertices are in the same hyperedge – and e-adjacency – vertices of a given hyperedge are e-adjacent. In order to build a new e-adjacency tensor that is interpretable in terms of hypergraph uniformisation, we designed two processes: the first is a hypergraph uniformisation process (HUP) and the second is a polynomial homogeneisation process (PHP). The PHP allows the construction of the e-adjacency tensor while the HUP ensures that the PHP keeps interpretability. This tensor is symmetric and can be fully described by the number of hyperedges; its order is the range of the hypergraph, while extra dimensions allow to capture additional hypergraph structural information including the maximum level of <em>k</em>-adjacency of each hyperedge. Some results on spectral analysis are discussed.</p></div>","PeriodicalId":35408,"journal":{"name":"Electronic Notes in Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.endm.2018.11.012","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571065318302075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6
Abstract
In graphs, the concept of adjacency is clearly defined: it is a pairwise relationship between vertices. Adjacency in hypergraphs has to integrate hyperedge multi-adicity: the concept of adjacency needs to be defined properly by introducing two new concepts: k-adjacency – k vertices are in the same hyperedge – and e-adjacency – vertices of a given hyperedge are e-adjacent. In order to build a new e-adjacency tensor that is interpretable in terms of hypergraph uniformisation, we designed two processes: the first is a hypergraph uniformisation process (HUP) and the second is a polynomial homogeneisation process (PHP). The PHP allows the construction of the e-adjacency tensor while the HUP ensures that the PHP keeps interpretability. This tensor is symmetric and can be fully described by the number of hyperedges; its order is the range of the hypergraph, while extra dimensions allow to capture additional hypergraph structural information including the maximum level of k-adjacency of each hyperedge. Some results on spectral analysis are discussed.
期刊介绍:
Electronic Notes in Discrete Mathematics is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication is appropriate. Organizers of conferences whose proceedings appear in Electronic Notes in Discrete Mathematics, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.