GPU-based acceleration of interval type-2 fuzzy c-means clustering for satellite imagery land-cover classification

L. Ngo, D. Mai, Mau Uyen Nguyen
{"title":"GPU-based acceleration of interval type-2 fuzzy c-means clustering for satellite imagery land-cover classification","authors":"L. Ngo, D. Mai, Mau Uyen Nguyen","doi":"10.1109/ISDA.2012.6416674","DOIUrl":null,"url":null,"abstract":"When processing with large data such as satellite images, the computing speed is the problem need to be resolved. This paper introduces a method to improve the computational efficiency of the interval type-2 fuzzy c-means clustering(IT2-FCM) based on GPU platform and applied to land-cover classification from multi-spectral satellite image. GPU-based calculations are high performance solution and free up the CPU. The experimental results show that the performance of the GPU is many times faster than CPU.","PeriodicalId":370150,"journal":{"name":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2012.6416674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

When processing with large data such as satellite images, the computing speed is the problem need to be resolved. This paper introduces a method to improve the computational efficiency of the interval type-2 fuzzy c-means clustering(IT2-FCM) based on GPU platform and applied to land-cover classification from multi-spectral satellite image. GPU-based calculations are high performance solution and free up the CPU. The experimental results show that the performance of the GPU is many times faster than CPU.
基于gpu的区间2型模糊c均值聚类加速卫星影像土地覆盖分类
在处理卫星图像等大数据时,计算速度是需要解决的问题。介绍了一种提高基于GPU平台的区间2型模糊c均值聚类(IT2-FCM)计算效率的方法,并将其应用于多光谱卫星影像的土地覆盖分类。基于gpu的计算是高性能的解决方案,并且释放了CPU。实验结果表明,GPU的性能比CPU快很多倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信