{"title":"Investigating factors affecting photoconductive microwave switch performance using 3D EM simulation","authors":"E. Kowalczuk, R. Seager, C. Panagamuwa","doi":"10.1109/LAPC.2015.7366025","DOIUrl":null,"url":null,"abstract":"A series of 3D EM simulation models are presented in order to determine the effect that conductivity profile, passivation layer and connection method have on the transmission performance of a photoconductive microwave switch. The use of 3D EM simulation can help quantify the benefit and impact of different approaches before the manufacture stage. The aim is to find methods to reduce insertion loss of the switch to provide maximum efficiency when the device is integrated into reconfigurable applications. Results show improvement to the transmission is possible by altering passivation thickness and designing optical feed to maintain signal planarity.","PeriodicalId":339610,"journal":{"name":"2015 Loughborough Antennas & Propagation Conference (LAPC)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Loughborough Antennas & Propagation Conference (LAPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAPC.2015.7366025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A series of 3D EM simulation models are presented in order to determine the effect that conductivity profile, passivation layer and connection method have on the transmission performance of a photoconductive microwave switch. The use of 3D EM simulation can help quantify the benefit and impact of different approaches before the manufacture stage. The aim is to find methods to reduce insertion loss of the switch to provide maximum efficiency when the device is integrated into reconfigurable applications. Results show improvement to the transmission is possible by altering passivation thickness and designing optical feed to maintain signal planarity.