W. Orozco-Tupacyupanqui, M. Carpio-Alemán, M. Nakano-Miyatake, H. Perez-Meana
{"title":"Analysis of convex adaptive structures and algorithms for smart antennas","authors":"W. Orozco-Tupacyupanqui, M. Carpio-Alemán, M. Nakano-Miyatake, H. Perez-Meana","doi":"10.1109/ROPEC.2016.7830529","DOIUrl":null,"url":null,"abstract":"In this paper, two different filter structures for smart antennas based on a convex combination of independent transversal adaptive sub-filters are analyzed. The first structure combines the least-mean-squares (LMS) and the augmented complex least-mean-squares (ACLMS) algorithms, whereas the second one uses the recursive least-squares (RLS) and the complex dual least-mean-squares (CDU-LMS) algorithms. The individual sub-filters are independently adapted using their own error signals, while the whole smart system is adapted by means of a convex stochastic gradient algorithm that generates an third independent error signal. The number of iterations required to reach convergence and the effects of the control parameter τ on the learning curve of the whole structure are studied. According to the simulation, these hybrid smart structures turned out to be more robust than a smart antenna that uses an unique adaptive filter. In general, both hybrid smart beamformers show to have a better filtering capacity than the standard LMS and RLS smart antenna systems. General equations for the overall output and the radiation pattern have been developed for both variations.","PeriodicalId":166098,"journal":{"name":"2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC.2016.7830529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, two different filter structures for smart antennas based on a convex combination of independent transversal adaptive sub-filters are analyzed. The first structure combines the least-mean-squares (LMS) and the augmented complex least-mean-squares (ACLMS) algorithms, whereas the second one uses the recursive least-squares (RLS) and the complex dual least-mean-squares (CDU-LMS) algorithms. The individual sub-filters are independently adapted using their own error signals, while the whole smart system is adapted by means of a convex stochastic gradient algorithm that generates an third independent error signal. The number of iterations required to reach convergence and the effects of the control parameter τ on the learning curve of the whole structure are studied. According to the simulation, these hybrid smart structures turned out to be more robust than a smart antenna that uses an unique adaptive filter. In general, both hybrid smart beamformers show to have a better filtering capacity than the standard LMS and RLS smart antenna systems. General equations for the overall output and the radiation pattern have been developed for both variations.