A chatbot using LSTM-based multi-layer embedding for elderly care

Ming-Hsiang Su, Chung-Hsien Wu, Kun-Yi Huang, Qian-Bei Hong, H. Wang
{"title":"A chatbot using LSTM-based multi-layer embedding for elderly care","authors":"Ming-Hsiang Su, Chung-Hsien Wu, Kun-Yi Huang, Qian-Bei Hong, H. Wang","doi":"10.1109/ICOT.2017.8336091","DOIUrl":null,"url":null,"abstract":"According to demographic changes, the services designed for the elderly are becoming more needed than before and increasingly important. In previous work, social media or community-based question-answer data were generally used to build the chatbot. In this study, we collected the MHMC chitchat dataset from daily conversations with the elderly. Since people are free to say anything to the system, the collected sentences are converted into patterns in the preprocessing part to cover the variability of conversational sentences. Then, an LSTM-based multi-layer embedding model is used to extract the semantic information between words and sentences in a single turn with multiple sentences when chatting with the elderly. Finally, the Euclidean distance is employed to select a proper question pattern, which is further used to select the corresponding answer to respond to the elderly. For performance evaluation, five-fold cross-validation scheme was employed for training and evaluation. Experimental results show that the proposed method achieved an accuracy of 79.96% for top-1 response selection, which outperformed the traditional Okapi model.","PeriodicalId":297245,"journal":{"name":"2017 International Conference on Orange Technologies (ICOT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Orange Technologies (ICOT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOT.2017.8336091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

According to demographic changes, the services designed for the elderly are becoming more needed than before and increasingly important. In previous work, social media or community-based question-answer data were generally used to build the chatbot. In this study, we collected the MHMC chitchat dataset from daily conversations with the elderly. Since people are free to say anything to the system, the collected sentences are converted into patterns in the preprocessing part to cover the variability of conversational sentences. Then, an LSTM-based multi-layer embedding model is used to extract the semantic information between words and sentences in a single turn with multiple sentences when chatting with the elderly. Finally, the Euclidean distance is employed to select a proper question pattern, which is further used to select the corresponding answer to respond to the elderly. For performance evaluation, five-fold cross-validation scheme was employed for training and evaluation. Experimental results show that the proposed method achieved an accuracy of 79.96% for top-1 response selection, which outperformed the traditional Okapi model.
一种基于lstm多层嵌入的养老聊天机器人
根据人口结构的变化,为老年人设计的服务比以前更有需要,也越来越重要。在之前的工作中,通常使用社交媒体或基于社区的问答数据来构建聊天机器人。在这项研究中,我们从与老年人的日常对话中收集了MHMC聊天数据集。由于人们可以自由地对系统说任何话,因此在预处理部分将收集到的句子转换为模式,以覆盖会话句子的可变性。然后,利用基于lstm的多层嵌入模型,提取与老年人聊天时单回合多句词与句子之间的语义信息;最后,利用欧几里得距离选择合适的问题模式,进而选择相应的答案来回应老年人。在绩效评估方面,采用五重交叉验证方案进行培训和评估。实验结果表明,该方法对top-1响应的选择准确率达到79.96%,优于传统的Okapi模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信