Cuong Hoang, Anh-Cuong Le, Phuong-Thai Nguyen, T. Ho
{"title":"Exploiting Non-Parallel Corpora for Statistical Machine Translation","authors":"Cuong Hoang, Anh-Cuong Le, Phuong-Thai Nguyen, T. Ho","doi":"10.1109/rivf.2012.6169833","DOIUrl":null,"url":null,"abstract":"Constructing a corpus of parallel sentence pairs is an important work in building a Statistical Machine Translation system. It impacts deeply how the quality of a Statistical Machine Translation could achieve. The more parallel sentence pairs we use to train the system, the better translation's quality it is. Nowadays, comparable non-parallel corpora become important resources to alleviate scarcity of parallel corpora. The problem here is how to extract parallel sentence pairs automatically but accurately from comparable non-parallel corpora, which are usually very \"noisy\". This paper presents how we can apply the reinforcement-learning scheme with our new proposed algorithm for detecting parallel sentence pairs. We specify that from an initial set of parallel sentences in a domain, the proposed model can extract a large number of new parallel sentence pairs from non-parallel corpora resources in different domains, concurrently increasing the system's translation ability gradually.","PeriodicalId":115212,"journal":{"name":"2012 IEEE RIVF International Conference on Computing & Communication Technologies, Research, Innovation, and Vision for the Future","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE RIVF International Conference on Computing & Communication Technologies, Research, Innovation, and Vision for the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/rivf.2012.6169833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Constructing a corpus of parallel sentence pairs is an important work in building a Statistical Machine Translation system. It impacts deeply how the quality of a Statistical Machine Translation could achieve. The more parallel sentence pairs we use to train the system, the better translation's quality it is. Nowadays, comparable non-parallel corpora become important resources to alleviate scarcity of parallel corpora. The problem here is how to extract parallel sentence pairs automatically but accurately from comparable non-parallel corpora, which are usually very "noisy". This paper presents how we can apply the reinforcement-learning scheme with our new proposed algorithm for detecting parallel sentence pairs. We specify that from an initial set of parallel sentences in a domain, the proposed model can extract a large number of new parallel sentence pairs from non-parallel corpora resources in different domains, concurrently increasing the system's translation ability gradually.