Dueling Double Q-learning based Real-time Energy Dispatch in Grid-connected Microgrids

Yuankai Shu, Wenzheng Bi, Wei Dong, Qiang Yang
{"title":"Dueling Double Q-learning based Real-time Energy Dispatch in Grid-connected Microgrids","authors":"Yuankai Shu, Wenzheng Bi, Wei Dong, Qiang Yang","doi":"10.1109/DCABES50732.2020.00020","DOIUrl":null,"url":null,"abstract":"This paper presents a real-time scheduling strategy based on deep reinforcement learning (DRL) algorithm aiming to realize economic dispatch of microgrid energy storage considering operational uncertainties. Making the scheduling decision of microgrid is a non-trivial task due to the random fluctuations of new energy power generation systems and loads. In order to solve this problem, the double deep Q-learning algorithm with the dueling structure is investigated to ensure the reliability of the microgrid while considering the real-time electricity prices. The agent is tested on the actual data and the results show that the proposed algorithm can get small operation cost of the microgrid in complex situations.","PeriodicalId":351404,"journal":{"name":"2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCABES50732.2020.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a real-time scheduling strategy based on deep reinforcement learning (DRL) algorithm aiming to realize economic dispatch of microgrid energy storage considering operational uncertainties. Making the scheduling decision of microgrid is a non-trivial task due to the random fluctuations of new energy power generation systems and loads. In order to solve this problem, the double deep Q-learning algorithm with the dueling structure is investigated to ensure the reliability of the microgrid while considering the real-time electricity prices. The agent is tested on the actual data and the results show that the proposed algorithm can get small operation cost of the microgrid in complex situations.
基于双q学习的并网微电网实时能源调度
为实现考虑运行不确定性的微电网储能经济调度,提出了一种基于深度强化学习(DRL)算法的实时调度策略。由于新能源发电系统和负荷的随机波动,微电网的调度决策是一项不容忽视的任务。为了解决这一问题,研究了具有决斗结构的双深度q -学习算法,在考虑实时电价的同时保证微电网的可靠性。在实际数据上对该智能体进行了测试,结果表明该算法可以在复杂情况下获得较小的微电网运行成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信