Visual Analytics via Graph Signal Processing

Alcebíades Dal Col Júnior, L. G. Nonato
{"title":"Visual Analytics via Graph Signal Processing","authors":"Alcebíades Dal Col Júnior, L. G. Nonato","doi":"10.11606/T.55.2018.TDE-22102018-112358","DOIUrl":null,"url":null,"abstract":"This dissertation presents an overview of the extension of the classical signal processing theory to graph domains. Furthermore, we introduce in this dissertation a novel method for visual analysis of dynamic networks, which relies on the graph wavelet theory. Our method enables the automatic analysis of a signal defined on the nodes of a network. We use a fast approximation of the graph wavelet transform to derive a set of wavelet coefficients, which are then used to identify activity patterns on large networks, including their temporal recurrence. The wavelet coefficients naturally encode spatial and temporal variations of the signal, leading to an efficient and meaningful representation. This method allows for the exploration of the structural evolution of the network and their patterns over time. The effectiveness of our approach is demonstrated using different scenarios and comparisons involving real dynamic networks.","PeriodicalId":119031,"journal":{"name":"Anais Estendidos da Conference on Graphics, Patterns and Images (SIBGRAPI)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos da Conference on Graphics, Patterns and Images (SIBGRAPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11606/T.55.2018.TDE-22102018-112358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This dissertation presents an overview of the extension of the classical signal processing theory to graph domains. Furthermore, we introduce in this dissertation a novel method for visual analysis of dynamic networks, which relies on the graph wavelet theory. Our method enables the automatic analysis of a signal defined on the nodes of a network. We use a fast approximation of the graph wavelet transform to derive a set of wavelet coefficients, which are then used to identify activity patterns on large networks, including their temporal recurrence. The wavelet coefficients naturally encode spatial and temporal variations of the signal, leading to an efficient and meaningful representation. This method allows for the exploration of the structural evolution of the network and their patterns over time. The effectiveness of our approach is demonstrated using different scenarios and comparisons involving real dynamic networks.
通过图形信号处理的可视化分析
本文概述了经典信号处理理论在图域上的扩展。此外,本文还介绍了一种基于图小波理论的动态网络可视化分析方法。我们的方法能够自动分析网络节点上定义的信号。我们使用图形小波变换的快速近似来导出一组小波系数,然后用于识别大型网络上的活动模式,包括它们的时间递归。小波系数自然地编码信号的空间和时间变化,导致一个有效和有意义的表示。这种方法允许探索网络的结构演变及其模式随时间的变化。我们的方法的有效性通过不同的场景和涉及真实动态网络的比较来证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信