K. Almaeva, I. Litovchenko, N. Polekhina, V. V. Linnik
{"title":"MECHANISMS OF HARDENING OF 12% CHROMIUM FERRITIC-MARTENSITIC STEEL EP-823","authors":"K. Almaeva, I. Litovchenko, N. Polekhina, V. V. Linnik","doi":"10.25205/978-5-4437-1353-3-54","DOIUrl":null,"url":null,"abstract":"Based on experimental data on microstructure parameters of the reactor high-strength high-chromium (12 % Cr) ferritic-martensitic steel EP-823, the authors identified the main factors responsible for its strength properties. The hardening mechanisms of this steel were analyzed after processing according to the modes that provide different level of steel strength properties. Traditional heat treatment (THT) and promising modifying high-temperature thermomechanical treatment (HTMT) are considered. The main mechanisms of steel hardening, regardless of the processing mode, are: dispersed hardening by nanoscale particles of the MeX type (Me = V, Nb, Mo; X = C, N) by the Orovana mechanism; grain-boundary hardening by high-angle boundaries of martensitic blocks and ferrite grains; substructural hardening by small-angle boundaries of martensitic lamellae; dislocation hardening by increased dislocation density. HTMT mode, which includes hot deformation in the austenitic area, leads to a significant modification of the structural-phase state of steel relative to THT: a decrease in the average size of blocks and lamellae of martensite, as well as ferrite grains, an increase in the density of dislocations and the volume fraction of nanoscale particles of the MeX type. At the same time, the corresponding contributions to value of the steel yield strength from grain boundary, substructural and dispersed hardening increase by 1.2, 1.3 and 1.8 times in comparison with THT. The relative contributions of the considered hardening mechanisms to the yield strength of ferritic-martensitic steel EP-823 were discussed. The values closest to the experimental yield strength after two treatment modes studied are obtained when the Langford-Cohen model is used to estimate the magnitude of substructural hardening.","PeriodicalId":120320,"journal":{"name":"Physical Mesomechanics of Materials. Physical Principles of Multi-Layer Structure Forming and Mechanisms of Non-Linear Behavior: Conference Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics of Materials. Physical Principles of Multi-Layer Structure Forming and Mechanisms of Non-Linear Behavior: Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25205/978-5-4437-1353-3-54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Based on experimental data on microstructure parameters of the reactor high-strength high-chromium (12 % Cr) ferritic-martensitic steel EP-823, the authors identified the main factors responsible for its strength properties. The hardening mechanisms of this steel were analyzed after processing according to the modes that provide different level of steel strength properties. Traditional heat treatment (THT) and promising modifying high-temperature thermomechanical treatment (HTMT) are considered. The main mechanisms of steel hardening, regardless of the processing mode, are: dispersed hardening by nanoscale particles of the MeX type (Me = V, Nb, Mo; X = C, N) by the Orovana mechanism; grain-boundary hardening by high-angle boundaries of martensitic blocks and ferrite grains; substructural hardening by small-angle boundaries of martensitic lamellae; dislocation hardening by increased dislocation density. HTMT mode, which includes hot deformation in the austenitic area, leads to a significant modification of the structural-phase state of steel relative to THT: a decrease in the average size of blocks and lamellae of martensite, as well as ferrite grains, an increase in the density of dislocations and the volume fraction of nanoscale particles of the MeX type. At the same time, the corresponding contributions to value of the steel yield strength from grain boundary, substructural and dispersed hardening increase by 1.2, 1.3 and 1.8 times in comparison with THT. The relative contributions of the considered hardening mechanisms to the yield strength of ferritic-martensitic steel EP-823 were discussed. The values closest to the experimental yield strength after two treatment modes studied are obtained when the Langford-Cohen model is used to estimate the magnitude of substructural hardening.