Application of Back-Propagation Neural Network in Multiple Peak Photovoltaic MPPT

Shuran Jia, Daosheng Shi, Junran Peng, Yang Fang
{"title":"Application of Back-Propagation Neural Network in Multiple Peak Photovoltaic MPPT","authors":"Shuran Jia, Daosheng Shi, Junran Peng, Yang Fang","doi":"10.1109/ICIICII.2015.139","DOIUrl":null,"url":null,"abstract":"In a photovoltaic (PV) system that consists of multiple series-connected PV modules with bypass diode, there could be multiple peaks in the P-V curve of the PV system when the irradiance on PV modules become non-uniform, which results in conventional MPPT methods' failure in tracking the global maximum power point (GMPP). In view of this problem, we propose a novel GMPP tracking method based on back-propagation neural network (BPNN). The BPNN takes the irradiance on each PV module as input variables. After identification by the BPNN, the GMPP voltage is obtained, which acts as reference voltage to the DC-DC converter circuit to keep the PV system operating at GMPP. Simulation results showed that the proposed method has good adaptability and high precision.","PeriodicalId":349920,"journal":{"name":"2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIICII.2015.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a photovoltaic (PV) system that consists of multiple series-connected PV modules with bypass diode, there could be multiple peaks in the P-V curve of the PV system when the irradiance on PV modules become non-uniform, which results in conventional MPPT methods' failure in tracking the global maximum power point (GMPP). In view of this problem, we propose a novel GMPP tracking method based on back-propagation neural network (BPNN). The BPNN takes the irradiance on each PV module as input variables. After identification by the BPNN, the GMPP voltage is obtained, which acts as reference voltage to the DC-DC converter circuit to keep the PV system operating at GMPP. Simulation results showed that the proposed method has good adaptability and high precision.
反向传播神经网络在多峰光伏MPPT中的应用
在由多个带旁路二极管的光伏组件串联组成的光伏系统中,当光伏组件上的辐照度变得不均匀时,光伏系统的P-V曲线会出现多个峰值,导致传统的MPPT方法无法跟踪全局最大功率点(GMPP)。针对这一问题,提出了一种基于反向传播神经网络(BPNN)的GMPP跟踪方法。BPNN以每个PV模块上的辐照度作为输入变量。经BPNN辨识得到GMPP电压,作为DC-DC转换电路的参考电压,使光伏系统保持在GMPP运行。仿真结果表明,该方法具有较好的适应性和较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信