{"title":"Laplacian Eigenmaps based Semi-supervised Metric Fuzzy Clustering algorithm","authors":"Hongxi Xia, Shengbing Xu, Wei Cai, Peixuan Chen, Yuanhao Zhu","doi":"10.1109/ISCEIC53685.2021.00012","DOIUrl":null,"url":null,"abstract":"Semi-supervised Metric Fuzzy Clustering (SMUC) is known for taking advantage of prior information of membership to guide clustering. However, SMUC has the following problem: it is easy for SMUC to reduce the effectiveness of priori information of membership guidance because of the sensitivity of algorithm to random noise, which has a negative impact on the performance of SMUC algorithm. In order to solve the problem, we propose a Laplacian Eigenmaps based Semi-supervised Metric Fuzzy Clustering algorithm (LESMUC). Firstly, K nearest neighbors are selected in the data to construct the connected graph; secondly, the weight of the graph is calculated; finally, the objective function is minimized to get the mapping matrix, and the mapping matrix is used to map the data to a new space. This process can reduce the influence of random noise in the data set on the prior information and achieve better clustering effect. Experiments on UCI data and COVID-19 CT images show the effectiveness of the proposed clustering algorithm.","PeriodicalId":342968,"journal":{"name":"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCEIC53685.2021.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Semi-supervised Metric Fuzzy Clustering (SMUC) is known for taking advantage of prior information of membership to guide clustering. However, SMUC has the following problem: it is easy for SMUC to reduce the effectiveness of priori information of membership guidance because of the sensitivity of algorithm to random noise, which has a negative impact on the performance of SMUC algorithm. In order to solve the problem, we propose a Laplacian Eigenmaps based Semi-supervised Metric Fuzzy Clustering algorithm (LESMUC). Firstly, K nearest neighbors are selected in the data to construct the connected graph; secondly, the weight of the graph is calculated; finally, the objective function is minimized to get the mapping matrix, and the mapping matrix is used to map the data to a new space. This process can reduce the influence of random noise in the data set on the prior information and achieve better clustering effect. Experiments on UCI data and COVID-19 CT images show the effectiveness of the proposed clustering algorithm.