Unsupervised feature selection based on clustering

Sheng-yi Jiang, Lian-xi Wang
{"title":"Unsupervised feature selection based on clustering","authors":"Sheng-yi Jiang, Lian-xi Wang","doi":"10.1109/BICTA.2010.5645319","DOIUrl":null,"url":null,"abstract":"Feature selection plays an important part in improving the classification accuracy and the quality of clustering in many applications. Feature selection has been widely studied in supervised learning, but in unsupervised learning it is still relatively rare. In this paper, a novel definition of feature differentiation for identifying (determining) the relatively important features is presented, and a one-pass clustering-based feature selection approach is introduced. The new method with nearly linear time complexity selects the optimal subset according to the variation of the feature differentiation. Experimental results on UCI datasets show that our method, by removing the irrelevant or redundant features, can achieve promising classification and clustering results for most datasets. Compared with other traditional feature selection approaches the proposed algorithm has obtained similar or even better performance in terms of dimensionality reduction and classification accuracy.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Feature selection plays an important part in improving the classification accuracy and the quality of clustering in many applications. Feature selection has been widely studied in supervised learning, but in unsupervised learning it is still relatively rare. In this paper, a novel definition of feature differentiation for identifying (determining) the relatively important features is presented, and a one-pass clustering-based feature selection approach is introduced. The new method with nearly linear time complexity selects the optimal subset according to the variation of the feature differentiation. Experimental results on UCI datasets show that our method, by removing the irrelevant or redundant features, can achieve promising classification and clustering results for most datasets. Compared with other traditional feature selection approaches the proposed algorithm has obtained similar or even better performance in terms of dimensionality reduction and classification accuracy.
基于聚类的无监督特征选择
在许多应用中,特征选择对提高分类精度和聚类质量起着重要作用。特征选择在监督学习中得到了广泛的研究,但在非监督学习中还比较少见。本文提出了一种新的特征区分定义,用于识别(确定)相对重要的特征,并引入了一种基于一次聚类的特征选择方法。该方法具有近似线性的时间复杂度,根据特征微分的变化选择最优子集。在UCI数据集上的实验结果表明,我们的方法通过去除不相关或冗余的特征,可以对大多数数据集取得很好的分类和聚类结果。与其他传统的特征选择方法相比,该算法在降维和分类精度方面取得了相似甚至更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信