Ming-Ching Chang, N. Krahnstoever, Ser-Nam Lim, Ting Yu
{"title":"Group Level Activity Recognition in Crowded Environments across Multiple Cameras","authors":"Ming-Ching Chang, N. Krahnstoever, Ser-Nam Lim, Ting Yu","doi":"10.1109/AVSS.2010.65","DOIUrl":null,"url":null,"abstract":"Environments such as schools, public parks and prisonsand others that contain a large number of people are typi-cally characterized by frequent and complex social interac-tions. In order to identify activities and behaviors in suchenvironments, it is necessary to understand the interactionsthat take place at a group level. To this end, this paper ad-dresses the problem of detecting and predicting suspiciousand in particular aggressive behaviors between groups ofindividuals such as gangs in prison yards. The work buildson a mature multi-camera multi-target person tracking sys-tem that operates in real-time and has the ability to han-dle crowded conditions. We consider two approaches forgrouping individuals: (i) agglomerative clustering favoredby the computer vision community, as well as (ii) decisiveclustering based on the concept of modularity, which is fa-vored by the social network analysis community. We showthe utility of such grouping analysis towards the detectionof group activities of interest. The presented algorithm isintegrated with a system operating in real-time to success-fully detect highly realistic aggressive behaviors enacted bycorrectional officers in a simulated prison environment. Wepresent results from these enactments that demonstrate theefficacy of our approach.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64
Abstract
Environments such as schools, public parks and prisonsand others that contain a large number of people are typi-cally characterized by frequent and complex social interac-tions. In order to identify activities and behaviors in suchenvironments, it is necessary to understand the interactionsthat take place at a group level. To this end, this paper ad-dresses the problem of detecting and predicting suspiciousand in particular aggressive behaviors between groups ofindividuals such as gangs in prison yards. The work buildson a mature multi-camera multi-target person tracking sys-tem that operates in real-time and has the ability to han-dle crowded conditions. We consider two approaches forgrouping individuals: (i) agglomerative clustering favoredby the computer vision community, as well as (ii) decisiveclustering based on the concept of modularity, which is fa-vored by the social network analysis community. We showthe utility of such grouping analysis towards the detectionof group activities of interest. The presented algorithm isintegrated with a system operating in real-time to success-fully detect highly realistic aggressive behaviors enacted bycorrectional officers in a simulated prison environment. Wepresent results from these enactments that demonstrate theefficacy of our approach.