Privacy preservation of aggregates in hidden databases: why and how?

A. Dasgupta, Nan Zhang, Gautam Das, S. Chaudhuri
{"title":"Privacy preservation of aggregates in hidden databases: why and how?","authors":"A. Dasgupta, Nan Zhang, Gautam Das, S. Chaudhuri","doi":"10.1145/1559845.1559863","DOIUrl":null,"url":null,"abstract":"Many websites provide form-like interfaces which allow users to execute search queries on the underlying hidden databases. In this paper, we explain the importance of protecting sensitive aggregate information of hidden databases from being disclosed through individual tuples returned by the search queries. This stands in contrast to the traditional privacy problem where individual tuples must be protected while ensuring access to aggregating information. We propose techniques to thwart bots from sampling the hidden database to infer aggregate information. We present theoretical analysis and extensive experiments to illustrate the effectiveness of our approach.","PeriodicalId":344093,"journal":{"name":"Proceedings of the 2009 ACM SIGMOD International Conference on Management of data","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2009 ACM SIGMOD International Conference on Management of data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1559845.1559863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Many websites provide form-like interfaces which allow users to execute search queries on the underlying hidden databases. In this paper, we explain the importance of protecting sensitive aggregate information of hidden databases from being disclosed through individual tuples returned by the search queries. This stands in contrast to the traditional privacy problem where individual tuples must be protected while ensuring access to aggregating information. We propose techniques to thwart bots from sampling the hidden database to infer aggregate information. We present theoretical analysis and extensive experiments to illustrate the effectiveness of our approach.
隐藏数据库中聚合的隐私保护:为什么以及如何保护?
许多网站提供类似表单的界面,允许用户在底层隐藏的数据库上执行搜索查询。在本文中,我们解释了保护隐藏数据库的敏感聚合信息不通过搜索查询返回的单个元组泄露的重要性。这与传统的隐私问题形成对比,传统的隐私问题必须保护单个元组,同时确保对聚合信息的访问。我们提出了一些技术来阻止机器人从隐藏的数据库中采样来推断汇总信息。我们提出了理论分析和广泛的实验来说明我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信