A signature-based liver cancer predictive system

R. Hashemi, J. H. Early, M. Bahar, A. Tyler, John F. Young
{"title":"A signature-based liver cancer predictive system","authors":"R. Hashemi, J. H. Early, M. Bahar, A. Tyler, John F. Young","doi":"10.1109/ITCC.2005.37","DOIUrl":null,"url":null,"abstract":"The predictive system presented in this paper employs both SOM and Hopfield nets to determine whether a given chemical agent causes cancer in the liver. The SOM net performs the clustering of the training set and delivers a signature for each cluster. Hopfield net treats each signature as an exemplar and learns the exemplars. Each record of the test set is considered a corrupted signature. The Hopfield net tries to un-corrupt the test record using learned exemplars and map it to one of the signatures and consequently to the prediction value associated with the signature. Four pairs of training and test sets are used to test the system. To establish the validity of the new predictive system, its performance is compared with the performance of the discriminant analysis and the rough sets methodology applied on the same datasets.","PeriodicalId":326887,"journal":{"name":"International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITCC.2005.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The predictive system presented in this paper employs both SOM and Hopfield nets to determine whether a given chemical agent causes cancer in the liver. The SOM net performs the clustering of the training set and delivers a signature for each cluster. Hopfield net treats each signature as an exemplar and learns the exemplars. Each record of the test set is considered a corrupted signature. The Hopfield net tries to un-corrupt the test record using learned exemplars and map it to one of the signatures and consequently to the prediction value associated with the signature. Four pairs of training and test sets are used to test the system. To establish the validity of the new predictive system, its performance is compared with the performance of the discriminant analysis and the rough sets methodology applied on the same datasets.
基于特征的肝癌预测系统
本文提出的预测系统采用SOM和Hopfield网络来确定给定的化学制剂是否会导致肝脏癌症。SOM网络对训练集进行聚类,并为每个聚类提供签名。Hopfield网络将每个签名视为一个范例,并学习这些范例。测试集的每个记录都被认为是一个损坏的签名。Hopfield网络尝试使用学习到的样本来修复测试记录,并将其映射到其中一个签名,从而映射到与签名相关的预测值。使用四对训练集和测试集对系统进行测试。为了确定新预测系统的有效性,将其性能与在相同数据集上应用的判别分析和粗糙集方法的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信