Discriminative Feature Extraction Based on Sequential Variational Autoencoder for Speaker Recognition

Takenori Yoshimura, Natsumi Koike, Kei Hashimoto, Keiichiro Oura, Yoshihiko Nankaku, K. Tokuda
{"title":"Discriminative Feature Extraction Based on Sequential Variational Autoencoder for Speaker Recognition","authors":"Takenori Yoshimura, Natsumi Koike, Kei Hashimoto, Keiichiro Oura, Yoshihiko Nankaku, K. Tokuda","doi":"10.23919/APSIPA.2018.8659722","DOIUrl":null,"url":null,"abstract":"This paper presents an extended version of the variational autoencoder (VAE) for sequence modeling. In contrast to the original VAE, the proposed model can directly handle variable-length observation sequences. Furthermore, the discriminative model and the generative model are simultaneously learned in a unified framework. The network architecture of the proposed model is inspired by the i-vector/PLDA framework, whose effectiveness has been proven in sequence modeling tasks such as speaker recognition. Experimental results on the TIMIT database show that the proposed model outperforms the traditional i-vector/PLDA system.","PeriodicalId":287799,"journal":{"name":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPA.2018.8659722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an extended version of the variational autoencoder (VAE) for sequence modeling. In contrast to the original VAE, the proposed model can directly handle variable-length observation sequences. Furthermore, the discriminative model and the generative model are simultaneously learned in a unified framework. The network architecture of the proposed model is inspired by the i-vector/PLDA framework, whose effectiveness has been proven in sequence modeling tasks such as speaker recognition. Experimental results on the TIMIT database show that the proposed model outperforms the traditional i-vector/PLDA system.
基于顺序变分自编码器的判别性特征提取在说话人识别中的应用
本文提出了用于序列建模的变分自编码器(VAE)的扩展版本。与原始VAE相比,该模型可以直接处理变长观测序列。此外,判别模型和生成模型在一个统一的框架中同时学习。该模型的网络架构受到i-vector/PLDA框架的启发,其有效性已在说话人识别等序列建模任务中得到证明。在TIMIT数据库上的实验结果表明,该模型优于传统的i-vector/PLDA系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信