Classificability-regulated self-organizing map using restricted RBF

P. Hartono, T. Trappenberg
{"title":"Classificability-regulated self-organizing map using restricted RBF","authors":"P. Hartono, T. Trappenberg","doi":"10.1109/IJCNN.2013.6706732","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a hierarchical neural network similar to the Radial Basis Function (RBF) Network. The proposed Restricted RBF (rRBF) executes a neighborhood-restricted activation function for its hidden neurons and consequently generates a unique topological map, which differs from the conventional Self-Organizing Map, in its internal layer. The primary objective of this study is to visualize and study the emergence of order in the structure and investigate the relation between the order and the learning performance of a hierarchical neural network.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we propose a hierarchical neural network similar to the Radial Basis Function (RBF) Network. The proposed Restricted RBF (rRBF) executes a neighborhood-restricted activation function for its hidden neurons and consequently generates a unique topological map, which differs from the conventional Self-Organizing Map, in its internal layer. The primary objective of this study is to visualize and study the emergence of order in the structure and investigate the relation between the order and the learning performance of a hierarchical neural network.
基于受限RBF的可分类调节自组织映射
本文提出了一种类似于径向基函数(RBF)网络的分层神经网络。提出的限制性RBF (rRBF)对其隐藏的神经元执行邻域限制激活函数,从而在其内层生成与传统自组织映射不同的唯一拓扑映射。本研究的主要目的是可视化和研究结构中顺序的出现,并研究顺序与层次神经网络学习性能之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信